Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4+ T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-γ knockout mice pointing to the essential role of IFN-γ in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4+ T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-γ-producing cells or cells dependent on IFN-γ activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.
Blocking of costimulatory signals for T cell activation leads to tolerance in several transplantation models, but the underlying mechanisms are incompletely understood. We analyzed the involvement of regulatory T cells (Treg) and deletion of alloreactive cells in the induction and maintenance of tolerance after costimulation blockade in a mouse model of graft-vs-host reaction. Injection of splenocytes from the C57BL/6 parent strain into a sublethally irradiated F1 offspring (C57BL/6 × C3H) induced a GVHR characterized by severe pancytopenia. Treatment with anti-CD40L mAb and CTLA4-Ig every 3 days during 3 wk after splenocyte injection prevented disease development and induced a long-lasting state of stable mixed chimerism (>120 days). In parallel, host-specific tolerance was achieved as demonstrated by lack of host-directed alloreactivity of donor-type T cells in vitro and in vivo. Chimerism and tolerance were also obtained after CD25+ cell-depleted splenocyte transfer, showing that CD25+ natural Treg are not essential for tolerance induction. We further show that costimulation blockade results in enhanced Treg cell activity at early time points (days 6–30) after splenocyte transfer. This was demonstrated by the presence of a high percentage of Foxp3+ cells among donor CD4+ cells in the spleen of treated animals, and our finding that isolated donor-type T cells at an early time point (day 30) after splenocyte transfer displayed suppressive capacity in vitro. At later time points (>30 days after splenocyte transfer), clonal deletion of host-reactive T cells was found to be a major mechanism responsible for tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.