In this paper, a thorough analysis of quantification of the heating appliances’ flexibility provided by 200 households located in the Sion area (Switzerland) is presented. An extended evaluation of the available flexibility throughout the year as well as a correlation analysis between the outside temperature and flexibility is performed. The influence of pooling households in the prediction process is assessed. The impact of cutting the power to heating appliances and the incurred rebound effect are also described.
Today, cooling systems are widely used, notably with the unprecedented growth of data centres and building space cooling. These thermodynamic systems are powered mainly with electricity, and their peak loads are generally associated with very high carbon footprints. At the same time, congestion of the grid due to high load or renewable power injection is becoming an issue for all actors involved with electricity (producers, providers, consumers, and prosumers). Actually, both the price and associated carbon footprint of electricity usually fluctuates along with the charge of the network. This paper discusses the integration of power flexibility (PF) in new and existing cooling systems to avoid a possible cold crunch in the near future. After defining PF, several cooling systems archetypes are presented. Three possible ways to integrate PF are explained: flexibility by thermal inertia and energy storage (thermal and electrochemical). While PF principally targets the reduction of stress on the electric grid, other benefits can also be achieved, e.g. mitigation of direct carbon emissions and decrease of costs related to operating the refrigeration system. We explain how better management of energy transits and possible imbalance in electricity networks can be achieved by thermal inertia. The choice of integrating thermal storage or electric battery is discussed, and both solutions are considered in a specific case study. The study aims at better management of power loads on electricity network caused by the cooling system and could be useful for anyone involved with grid management and/or refrigeration systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.