Millions of HTML tables containing structured data can be found on the Web. With their wide coverage, these tables are potentially very useful for filling missing values and extending cross-domain knowledge bases such as DBpedia, YAGO, or the Google Knowledge Graph. As a prerequisite for being able to use table data for knowledge base extension, the HTML tables need to be matched with the knowledge base, meaning that correspondences between table rows/columns and entities/schema elements of the knowledge base need to be found. This paper presents the T2D gold standard for measuring and comparing the performance of HTML table to knowledge base matching systems. T2D consists of 8 700 schema-level and 26 100 entity-level correspondences between the WebDataCommons Web Tables Corpus and the DBpedia knowledge base. In contrast related work on HTML table to knowledge base matching, the Web Tables Corpus (147 million tables), the knowledge base, as well as the gold standard are publicly available. The gold standard is used afterward to evaluate the performance of T2K Match, an iterative matching method which combines schema and instance matching. T2K Match is designed for the use case of matching large quantities of mostly small and narrow HTML tables against large crossdomain knowledge bases. The evaluation using the T2D gold standard shows that T2K Match discovers table-to-class correspondences with a precision of 94%, row-to-entity correspondences with a precision of 90%, and column-to-property correspondences with a precision of 77%.
Abstract. With a growing number of ontologies used in the semantic web, agents can fully make sense of different datasets only if correspondences between those ontologies are known. Ontology matching tools have been proposed to find such correspondences. While the current research focus is mainly on fully automatic matching tools, some approaches have been proposed that involve the user in the matching process. However, there are currently no benchmarks and test methods to compare such tools. In this paper, we introduce a number of quality measures for interactive ontology matching tools, and we discuss means to automatically run benchmark tests for such tools. To demonstrate how those evaluation can be designed, we show examples on assessing the quality of interactive matching tools which involve the user in matcher selection and matcher parametrization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.