High temperature power electronics has become possible with the recent availability of silicon carbide devices. This material, as other wide-bandgap semiconductors, can operate at temperatures above 500°C, whereas silicon is limited to 150-200°C. Applications such as transportation or a deep oil and gas wells drilling can benefit. A few converters operating above 200°C have been demonstrated, but work is still ongoing to design and build a power system able to operate in harsh environment (high temperature and deep thermal cycling).
Temperature dependant properties of wide band gap semiconductors have been used to calculate theoretical specific on-resistance, breakdown voltage, and thermal run away temperature in SiC, GaN and diamond, and Si vertical power devices for comparison. It appears mainly that diamond is interesting for high power devices for high temperature applications. At room temperature, diamond power devices should be superior to SiC only for voltage higher than 30-40 kV, due to the high energy activation of the dopants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.