Recent reports highlighting the global significance of cryptosporidiosis among children, have renewed efforts to develop control measures. We have optimized the gnotobiotic piglet model of acute diarrhea to evaluate azithromycin (AZR), nitazoxanide (NTZ), or treatment with both against Cryptosporidium hominis, the species responsible for most human cases. Piglets, animals reproducibly clinically susceptible to C. hominis, when inoculated with 106 oocysts, developed acute diarrhea with oocyst excretion in feces within 3 days. Ten day-treatment with recommended doses for children, commencing at onset of diarrhea, showed that treatment with AZR or NTZ relieved symptoms early in the treatment compared with untreated animals. Piglets treated with AZR exhibited no reduction of oocyst excretion whereas treatment with NTZ significantly reduced oocyst shedding early, increasing however after 5 days. While treatment with AZR+NTZ led to considerable symptomatic improvement, it had a modest effect on reducing mucosal injury, and did not completely eliminate oocyst excretion. Doubling the dose of AZR and/or NTZ did not improve the clinical outcome, confirming clinical observations that NTZ is only partially effective in reducing duration of diarrhea in children. This investigation confirms the gnotobiotic piglet as a useful tool for drug evaluation for the treatment of cryptosporidiosis in children.
Background Cryptosporidiosis, an enteric protozoon, causes substantial morbidity and mortality associated with diarrhea in children <2 years old in low- to middle-income countries. There is no vaccine and treatments are inadequate. A piperazine-based compound, MMV665917, has in vitro and in vivo efficacy against Cryptosporidium parvum. In this study, we evaluated the efficacy of MMV665917 in gnotobiotic piglets experimentally infected with Cryptosporidium hominis, the species responsible for >75% of diarrhea reported in these children. Methods Gnotobiotic piglets were orally challenged with C hominis oocysts, and oral treatment with MMV665917 was commenced 3 days after challenge. Oocyst excretion and diarrhea severity were observed daily, and mucosal colonization and lesions were recorded after necropsy. Results MMV665917 significantly reduced fecal oocyst excretion, parasite colonization and damage to the intestinal mucosa, and peak diarrheal symptoms, compared with infected untreated controls. A dose of 20 mg/kg twice daily for 7 days was more effective than 10 mg/kg. There were no signs of organ toxicity at either dose, but 20 mg/kg was associated with slightly elevated blood cholesterol and monocytes at euthanasia. Conclusions These results demonstrate the effectiveness of this drug against C hominis. Piperazine-derivative MMV665917 may potentially be used to treat human cryptosporidiosis; however, further investigations are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.