An overview of offshore wind turbine (OWT) foundations is presented, focusing primarily on the monopile foundation. The uncertainty in offshore soil conditions as well as random wind and wave loading is currently treated with a deterministic design procedure, though some standards allow engineers to use a probability-based approach. Laterally loaded monopile foundations are typically designed using the American Petroleum Institute p-y method, which is problematic for large OWT pile diameters. Probabilistic methods are used to examine the reliability of OWT pile foundations under serviceability limit states using Euler-Bernoulli beam elements in a two-dimensional pile-spring model, non-linear with respect to the soil springs. The effects of soil property variation, pile design parameters, loading and large diameters on OWT pile reliability are presented.
a b s t r a c tThe contribution of foundation damping to offshore wind turbines (OWTs) is not well known, though researchers have back-calculated foundation damping from "rotor-stop" tests after estimating aerodynamic, hydrodynamic, and structural damping with numerical models. Because design guidelines do not currently recommend methods for determining foundation damping, it is typically neglected. This paper investigates the significance of foundation damping on monopile-supported OWTs subjected to extreme storm loading using a linear elastic two-dimensional finite element model. The effect of foundation damping primarily on the first natural frequency of the OWT was considered as OWT behavior is dominated by the first mode under storm loading. A simplified foundation model based on the soil-pile mudline stiffness matrix was used to represent the monopile, hydrodynamic effects were modeled via added hydrodynamic mass, and 1.00% Rayleigh structural damping was assumed. Hysteretic energy loss in the foundation was converted into a viscous, rotational dashpot at the mudline to represent foundation damping. Using the logarithmic decrement method on a finite element free vibration time history, 0.17%-0.28% of critical damping was attributed to foundation damping. Stochastic time history analysis of extreme storm conditions indicated that mudline OWT foundation damping decreases the maximum and standard deviation of mudline moment by 7e9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.