The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor-shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K I ) exceeds the critical stress intensity factor (K Ic ). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015±0.001·N (mean ± s.d.; N=5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16·N for measured sediment stiffness of E=2.7ϫ10 4 ·Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers (i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.Supplementary material available online at
As focus is drawn toward more sustainable construction practices, use of bamboo as a structural building material is growing as a topic of interest. It is highly renewable, has low-embodied energy, and has the highest strength-to-weight ratio of steel, concrete, and timber. Composite lumber made from bamboo, termed laminated bamboo lumber (LBL), has gained the particular interest of researchers and practitioners of late, since it has bamboo's mechanical properties but can be manufactured in well-defined dimensions, similar to commercially available wood products. Its primary drawbacks are that it is difficult to connect and is more costly than competing, locally available materials. This paper presents the advantages and challenges of embracing LBL as an alternative building material. Experimental and analytical data on production, performance, economics, and environmental impact of bamboo and LBL are reviewed, synthesized, and further analyzed to present an overview of the viability of using bamboo as a structural material in North America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.