Polychaetes are common in most marine habitats and dominate many infaunal communities. Functional guild classification based on taxonomic identity and morphology has linked community structure to ecological function. The functional guilds now include osmotrophic siboglinids as well as sipunculans, echiurans, and myzostomes, which molecular genetic analyses have placed within Annelida. Advances in understanding of encounter mechanisms explicitly relate motility to feeding mode. New analyses of burrowing mechanics explain the prevalence of bilateral symmetry and blur the boundary between surface and subsurface feeding. The dichotomy between microphagous deposit and suspension feeders and macrophagous carnivores, herbivores, and omnivores is further supported by divergent digestive strategies. Deposit feeding appears to be limited largely to worms longer than 1 cm, with juveniles and small worms in general restricted to ingesting highly digestible organic material and larger, rich food items, blurring the macrophage-microphage dichotomy that applies well to larger worms.
The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor-shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K I ) exceeds the critical stress intensity factor (K Ic ). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015±0.001·N (mean ± s.d.; N=5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16·N for measured sediment stiffness of E=2.7ϫ10 4 ·Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers (i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.Supplementary material available online at
Until now, the analysis of burrowing mechanics has neglected the mechanical properties of impeding, muddy, cohesive sediments, which behave like elastic solids. Here we show that burrowers can progress through such sediments by using a mechanically efficient, previously unsuspected mechanism--crack propagation--in which an alternating 'anchor' system of burrowing serves as a wedge to extend the crack-shaped burrow. The force required to propagate cracks through sediment in this way is relatively small: we find that the force exerted by the annelid worm Nereis virens in making and moving into such a burrow amounts to less than one-tenth of the force it needs to use against rigid aquarium walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.