Whole-genome expression profiling revealed Escherichia coli MG1655 genes induced by growth on mucus, conditions designed to mimic nutrient availability in the mammalian intestine. Most were nutritional genes corresponding to catabolic pathways for nutrients found in mucus. We knocked out several pathways and tested the relative fitness of the mutants for colonization of the mouse intestine in competition with their wild-type parent. We found that only mutations in sugar pathways affected colonization, not phospholipid and amino acid catabolism, not gluconeogenesis, not the tricarboxylic acid cycle, and not the pentose phosphate pathway. Gluconate appeared to be a major carbon source used by E. coli MG1655 to colonize, having an impact on both the initiation and maintenance stages. N-acetylglucosamine and N-acetylneuraminic acid appeared to be involved in initiation, but not maintenance. Glucuronate, mannose, fucose, and ribose appeared to be involved in maintenance, but not initiation. The in vitro order of preference for these seven sugars paralleled the relative impact of the corresponding metabolic lesions on colonization: gluconate > N-acetylglucosamine > N-acetylneuraminic acid ؍ glucuronate > mannose > fucose > ribose. The results of this systematic analysis of nutrients used by E. coli MG1655 to colonize the mouse intestine are intriguing in light of the nutrientniche hypothesis, which states that the ecological niches within the intestine are defined by nutrient availability. Because humans are presumably colonized with different commensal strains, differences in nutrient availability may provide an open niche for infecting E. coli pathogens in some individuals and a barrier to infection in others.
Escherichia coli MG1655 acid-inducible genes were identified by whole-genome expression profiling. Cultures were grown to the mid-logarithmic phase on acidified glucose minimal medium, conditions that induce glutamate-dependent acid resistance (AR), while the other AR systems are either repressed or not induced. A total of 28 genes were induced in at least two of three experiments in which the gene expression profiles of cells grown in acid (pH 5.5 or 4.5) were compared to those of cells grown at pH 7.4. As expected, the genes encoding glutamate decarboxylase, gadA and gadB, were significantly induced. Interestingly, two acid-inducible genes code for small basic proteins with pIs of >10.5, and six code for small acidic proteins with pIs ranging from 5.7 to 4.0; the roles of these small basic and acidic proteins in acid resistance are unknown. The acid-induced genes represented only five functional grouping categories, including eight genes involved in metabolism, nine associated with cell envelope structures or modifications, two encoding chaperones, six regulatory genes, and six unknown genes. It is unlikely that all of these genes are involved in the glutamate-dependent AR. However, nine acid-inducible genes are clustered in the gadA region, including hdeA, which encodes a putative periplasmic chaperone, and four putative regulatory genes. One of these putative regulators, yhiE, was shown to significantly increase acid resistance when overexpressed in cells that had not been preinduced by growth at pH 5.5, and mutation of yhiE decreased acid resistance; yhiE could therefore encode an activator of AR genes. Thus, the acid-inducible genes clustered in the gadA region appear to be involved in glutatmate-dependent acid resistance, although their specific roles remain to be elucidated.
SummaryCommensal and pathogenic strains of Escherichia coli possess three inducible acid resistance systems that collaboratively protect cells against acid stress to pH 2 or below. The most effective system requires glutamate in the acid challenge media and relies on two glutamate decarboxylases (GadA and B) combined with a putative glutamate: g g g g -aminobutyric acid antiporter (GadC). A complex network of regulators mediates induction of this system in response to various media, pH and growth phase signals. We report that the LuxR-like regulator GadE (formerly YhiE) is required for expression of gadA and gadBC regardless of media or growth conditions. This protein binds directly to the 20 bp GAD box sequence found in the control regions of both loci. Two previously identified AraC-like regulators, GadX and GadW, are only needed for gadA/BC expression under some circumstances. Overexpression of GadX or GadW will not overcome a need for GadE. However, overexpression of GadE can supplant a requirement for GadX and W. Data provided also indicate that GadX and GadE can simultaneously bind the area around the GAD box region and probably form a complex. The gadA , gadBC and gadE genes are all induced by low pH in exponential phase cells grown in minimal glucose media. The acid induction of gadA/BC results primarily from the acid induction of gadE . Constitutive expression of GadE removes most pH control over the glutamate decarboxylase and antiporter genes. The small amount of remaining pH control is governed by GadX and W. The finding that gadE mutations also diminish the effectiveness of the other two acid resistance systems suggests that GadE influences the expression of additional acid resistance components. The number of regulatory proteins (five), sigma factors (two) and regulatory feedback loops focused on gadA/BC expression make this one of the most intensively regulated systems in E. coli .
An important feature of Escherichia coli pathogenesis is an ability to withstand extremely acidic environments of pH 2 or lower. This acid resistance property contributes to the low infectious dose of pathogenic E. coli species. One very efficient E. coli acid resistance system encompasses two isoforms of glutamate decarboxylase (gadA and gadB) and a putative glutamate:␥-amino butyric acid (GABA) antiporter (gadC). The system is subject to complex controls that vary with growth media, growth phase, and growth pH. Previous work has revealed that the system is controlled by two sigma factors, two negative regulators (cyclic AMP receptor protein [CRP] and H-NS), and an AraC-like regulator called GadX. Earlier evidence suggested that the GadX protein acts both as a positive and negative regulator of the gadA and gadBC genes depending on environmental conditions. New data clarify this finding, revealing a collaborative regulation between GadX and another AraC-like regulator called GadW (previously YhiW). GadX and GadW are DNA binding proteins that form homodimers in vivo and are 42% homologous to each other. GadX activates expression of gadA and gadBC at any pH, while GadW inhibits GadX-dependent activation. Regulation of gadA and gadBC by either regulator requires an upstream, 20-bp GAD box sequence. Northern blot analysis further indicates that GadW represses expression of gadX. The results suggest a control circuit whereby GadW interacts with both the gadA and gadX promoters. GadW clearly represses gadX and, in situations where GadX is missing, activates gadA and gadBC. GadX, however, activates only gadA and gadBC expression. CRP also represses gadX expression. It does this primarily by repressing production of sigma S, the sigma factor responsible for gadX expression. In fact, the acid induction of gadA and gadBC observed when rich-medium cultures enter stationary phase corresponds to the acid induction of sigma S production. These complex control circuits impose tight rein over expression of the gadA and gadBC system yet provide flexibility for inducing acid resistance under many conditions that presage acid stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.