Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat-core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea-salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea-salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising. Nomenclature:AWMN 5 UK Acid Waters Monitoring Network;CET 5 Central England Temperature Record; DOC 5 dissolved organic carbon; SAA 5 sum of acid anions; xSO 4 5 nonmarine sulphate
Skjelkvåle, B. L.; Stoddard, J. L.; Jeffries, D. S.; Tørseth, K.; Høgåsen, T.; Bowman, J.; Mannio, J.; Monteith, D.T.; Mosello, R.; Rogora, M.; Rzychon, D,; Vesely, J.; Wieting, J.; Wilander, A.; and Worsztynowicz, A., "Regional scale evidence for improvements in surface water chemistry 1990-2001" (2005 Data demonstrates a continued regional-scale chemical response of acid sensitive lakes and streams to emissions controls programs which is conducive to biological recovery. AbstractThe main aim of the international UNECE monitoring program ICP Waters under the Convention of Long-range Transboundary Air Pollution (CLRTAP) is to assess, on a regional basis, the degree and geographical extent of the impact of atmospheric pollution, in particular acidification, on surface waters. Regional trends are calculated for 12 geographical regions in Europe and North America, comprising 189 surface waters sites. From 1990e2001 sulphate concentrations decreased in all but one of the investigated regions. Nitrate increased in only one region, and decreased in three North American regions. Improvements in alkalinity and pH are widely observed. Results from the ICP Waters programme clearly show widespread improvement in surface water acid-base chemistry, in response to emissions controls programs and decreasing acidic deposition. Limited site-specific biological data suggest that continued improvement in the chemical status of acid-sensitive lakes and streams will lead to biological recovery in the future.
Several studies have highlighted an increase in DOC concentration in streams and lakes of UK upland catchments though the causal mechanisms controlling the increase have yet to be fully explained. This study, compiles a comprehensive data set of DOC concentration records for UK catchments to evaluate trends and test whether observed increases are ubiquitous over time and space. The study analysed monthly DOC time series from 198 sites, including 29 lakes, 8 water supply reservoirs and 161 rivers. The records vary in length from 8 to 42 years going back as far as 1961. Of the 198 sites, 153 (77%) show an upward trend in DOC concentration significant at the 95% level, the remaining 45 (23%) show no significant trend and no sites show a significant decrease in DOC concentration. The average annual increase in DOC concentration was 0.17 mg C/l/year. The dataset shows: (i) a spatial consistent upward trend in the DOC concentration independent of regional effects of rainfall, acid and nitrogen deposition, and local effects of land-use change; (ii) a temporally consistent increase in DOC concentration for period back as far as the 1960s; (iii) the increase in DOC concentration means an estimated DOC flux from the UK as 0.86 Mt C for the year 2002 and is increasing at 0.02 Mt C/year. Possible reasons for the increasing DOC concentration are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.