[1] Substantial diel (24-hour) cycles in dissolved (0.1-mm filtration) metal concentrations were observed during low flow for 18 sampling episodes at 14 sites on 12 neutral and alkaline streams draining historical mining areas in Montana and Idaho. At some sites, concentrations of Cd, Mn, Ni, and Zn increased as much as 119, 306, 167, and 500%, respectively, from afternoon minimum values to maximum values shortly after sunrise. Arsenic concentrations exhibited the inverse temporal pattern with increases of up to 54%. Variations in Cu concentrations were small and inconsistent. Diel metal cycles are widespread and persistent, occur over a wide range of metal concentrations, and likely are caused primarily by instream geochemical processes. Adsorption is the only process that can explain the inverse temporal patterns of As and the divalent metals. Diel metal cycles have important implications for many types of water-quality studies and for understanding trace-metal mobility.
Abandoned tailings and mine adits are located throughout the Boulder River watershed in Montana. In this watershed, all species of fish are absent from some tributary reaches near mine sources; however, populations of brook trout Salvelinus fontitalis, rainbow trout Oncorhynchus mykiss, and cut‐throat trout O. clarki are found further downstream. Multiple methods must be used to investigate the effects of metals released by past mining activity because the effects on aquatic life may range in severity, depending on the proximity of mine sources. Therefore, we used three types of effects—those on fish population levels (as measured by survival), those on biomass and density, and those at the level of the individual (as measured by increases in metallothionein, products of lipid peroxidation, and increases in concentrations of tissue metals)—to assess the aquatic health of the Boulder River watershed. Elevated concentrations of Cd, Cu, and Zn in the water column were associated with increased mortality of trout at sites located near mine waste sources. The hypertrophy (swelling), degeneration (dying), and necrosis of epithelial cells observed in the gills support our conclusion that the cause of death was related to metals in the water column. At a site further downstream (lower Cataract Creek), we observed impaired health of resident trout, as well as effects on biomass and density (measured as decreases in the kilograms of trout per hectare and the number per 300 m) and effects at the individual level, including increases in metallothionein, products of lipid peroxidation, and tissue concentrations of metals.
Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3(-)), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3(-). The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3(-). Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3(-) compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3(-). This article is a US Government work and is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.