Hygiene has established a syndromic surveillance system that monitors emergency department visits to detect disease outbreaks early. Routinely collected chief complaint information is transmitted electronically to the health department daily and analyzed for temporal and spatial aberrations. Respiratory, fever, diarrhea, and vomiting are the key syndromes analyzed. Statistically significant aberrations or "signals" are investigated to determine their public health importance. In the first year of operation (November 15, 2001, to November 14, 2002, 2.5 million visits were reported from 39 participating emergency departments, covering an estimated 75% of annual visits. Most signals for the respiratory and fever syndromes (64% and 95%, respectively) occurred during periods of peak influenza A and B activity. Eighty-three percent of the signals for diarrhea and 88% of the signals for vomiting occurred during periods of suspected norovirus and rotavirus transmission.T wo recent phenomena have contributed to widespread interest in monitoring nonspecific health indicator data to detect disease outbreaks early. The first is heightened concern about bioterrorism, particularly the ability of public health agencies to detect a large-scale bioterrorist attack in its early stages. The second is the proliferation of electronic databases in healthcare settings. Initially designed to facilitate billing, health information systems capture an increasingly rich array of clinical detail. Recent advances in information technology make extracting, transmitting, processing, and analyzing these data feasible for public health purposes. The emergency department surveillance system we describe is an early prototype of what may become a standard component of modern public health surveillance.In New York City, emergency department chief complaint surveillance evolved out of the public health response to the September 11, 2001, World Trade Center attacks (1). When this labor-intensive effort ended, the New York City Department of Health and Mental Hygiene (DOHMH) began intensively recruiting hospitals capable of providing emergency department visit data in electronic formats. We describe the methods and chief results from the first 12 months of experience with this electronic system. Materials and Methods Data Transmission and ProcessingData files are transmitted to DOHMH 7 days per week, either as attachments to electronic mail messages or through direct file transfer protocol (FTP). Half of participating hospitals have automated the transmission process. Data processing and analysis are carried out on a laptop computer that can be operated either through the DOHMH local area network or through remote dial-up, which facilitates weekend and holiday analysis. Each morning, an analyst retrieves the files, inspects them for quality and completeness, and saves them for processing and analysis in SAS (version 8, SAS Institute Inc., Cary, NC). If a file is not received by 10:00 a.m., the analyst contacts hospitals to obtain missing data. The anal...
BackgroundThe importance of understanding age when estimating the impact of influenza on hospitalizations and deaths has been well described, yet existing surveillance systems have not made adequate use of age-specific data. Monitoring influenza-related morbidity using electronic health data may provide timely and detailed insight into the age-specific course, impact and epidemiology of seasonal drift and reassortment epidemic viruses. The purpose of this study was to evaluate the use of emergency department (ED) chief complaint data for measuring influenza-attributable morbidity by age and by predominant circulating virus.Methods and FindingsWe analyzed electronically reported ED fever and respiratory chief complaint and viral surveillance data in New York City (NYC) during the 2001–2002 through 2005–2006 influenza seasons, and inferred dominant circulating viruses from national surveillance reports. We estimated influenza-attributable impact as observed visits in excess of a model-predicted baseline during influenza periods, and epidemic timing by threshold and cross correlation. We found excess fever and respiratory ED visits occurred predominantly among school-aged children (8.5 excess ED visits per 1,000 children aged 5–17 y) with little or no impact on adults during the early-2002 B/Victoria-lineage epidemic; increased fever and respiratory ED visits among children younger than 5 y during respiratory syncytial virus-predominant periods preceding epidemic influenza; and excess ED visits across all ages during the 2003–2004 (9.2 excess visits per 1,000 population) and 2004–2005 (5.2 excess visits per 1,000 population) A/H3N2 Fujian-lineage epidemics, with the relative impact shifted within and between seasons from younger to older ages. During each influenza epidemic period in the study, ED visits were increased among school-aged children, and each epidemic peaked among school-aged children before other impacted age groups.ConclusionsInfluenza-related morbidity in NYC was highly age- and strain-specific. The impact of reemerging B/Victoria-lineage influenza was focused primarily on school-aged children born since the virus was last widespread in the US, while epidemic A/Fujian-lineage influenza affected all age groups, consistent with a novel antigenic variant. The correspondence between predominant circulating viruses and excess ED visits, hospitalizations, and deaths shows that excess fever and respiratory ED visits provide a reliable surrogate measure of incident influenza-attributable morbidity. The highly age-specific impact of influenza by subtype and strain suggests that greater age detail be incorporated into ongoing surveillance. Influenza morbidity surveillance using electronic data currently available in many jurisdictions can provide timely and representative information about the age-specific epidemiology of circulating influenza viruses.
Background Reports suggest that some persons previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lack detectable IgG antibodies. We aimed to determine the proportion IgG seronegative and predictors for seronegativity among persons previously infected with SARS-CoV-2. Methods We analyzed serologic data collected from health care workers and first responders in New York City and the Detroit metropolitan area with history of a positive SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) test result and who were tested for IgG antibodies to SARS-CoV-2 spike protein at least 2 weeks after symptom onset. Results Of 2,547 persons with previous confirmed SARS-CoV-2 infection, 160 (6.3%) were seronegative. Of 2,112 previously symptomatic persons, the proportion seronegative slightly increased from 14 to 90 days post symptom onset (p=0.06). The proportion seronegative ranged from 0% among 79 persons previously hospitalized to 11.0% among 308 persons with asymptomatic infections. In a multivariable model, persons taking immunosuppressive medications were more likely to be seronegative (31.9%, 95% confidence interval [CI] 10.7%-64.7%), while participants of non-Hispanic Black race/ethnicity (versus non-Hispanic White) (2.7%, 95% CI 1.5%-4.8%), with severe obesity (versus under/normal weight) (3.9%, 95% CI 1.7%-8.6%), or with more symptoms were less likely to be seronegative. Conclusions In our population with previous RT-PCR confirmed infection, approximately one in 16 persons lacked IgG antibodies. Absence of antibodies varied independently by illness severity, race/ethnicity, obesity, and immunosuppressive drug therapy. The proportion seronegative remained relatively stable among persons tested up to 90 days post symptom onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.