Crosslinked polystyrene-multiwalled carbon nanotube (PS-MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS-MWCNT balls ranged from 10 to 100 lm and their electrical conductivity was about 7.7 Â 10 À3 S/cm. The morphology of the crosslinked PS-MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS-MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS-MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS-MWCNT ball composites were better than those of the PS/pristine MWCNT composites.
Multiwalled carbon nanotubes (MWCNTs) were dispersed in various alcohols such as methanol, ethanol and isopropanol using ultrasonication. In order to disperse the MWCNTs in the alcohols, they were treated using a mixture of H 2 SO 4 and HNO 3 (3 : 1, vol/vol). The concentration of MWCNTs was approximately 0.03 wt.% and they formed a homogeneous dispersion in the alcohol solutions. The functional groups introduced on the surface of the MWCNTs during the acid treatment were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The dispersibility of the MWCNTs in the alcohols was characterized using atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The stability of the MWCNT dispersions was also measured using a recently developed optical analyzer (Turbiscan).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.