Since its discovery a quarter century ago, the cAMP-dependent protein kinase has been a central model for study of the mode of transduction of second messenger signals; more than 300 protein kinases are now known to play keys roles in cellular control. Multiple cellular events are initiated by the activation of the cAMP-dependent protein kinase and correlated with these events has been the identification of a broad spectrum of protein substrates. From model substrates and inhibitors an excellent understanding has been obtained of the "optimum" sequence for protein phosphorylation by the cAMP-dependent protein kinases, and now, from pioneering crystal structure studies, we are beginning to understand exactly how an optimum substrate can interact with and be efficiently phosphorylated by the kinase. The next important step is for us to understand the full sequence of events that occurs within the cell upon activation of the protein kinase, and it is abundantly evident that this is indeed a complex process. It is not sufficient to simply know which proteins are phosphorylated but it is critical that we understand the dynamics of the events surrounding the phosphorylation of multiple proteins, what factors dictate those dynamics, and what might happen when the sequence of events is perturbed. This review focuses on the first simple question that must be addressed, namely, how might proteins vary as substrates for the cAMP-dependent protein kinase and what ramifications might such variations have for the consequential events within the cell?
Small-angle X-ray scattering and Fourier transform infrared (FTIR) spectroscopy experiments have been completed on the catalytic subunit of the cAMP-dependent protein kinase. Measurements were made both with and without the protein kinase inhibitor peptide, PKI alpha(5-22)amide. Binding of the peptide results in an overall contraction of the structure that is characterized by a decrease of 9% in radius of gyration and about 16% in the maximum linear dimension. Both the secondary structure content of the protein/peptide complex, as determined by FTIR, and the solution structure of this binary complex, as determined by X-ray scattering, agree well with the structural characteristics of this complex as elucidated by the crystal structure [Knighton, D.R., Zheng, J., Ten Eyck, L. F., Ashford, V.A., Xuong, N.H., Taylor, S.S., & Sowadsi, J. M. (1991a) Science 253, 407-414]. Further, the contraction of the structure observed by X-ray scattering upon inhibitor peptide binding is not accompanied by any detectable change in secondary structure content of the kinase. We have modeled the contraction of the kinase upon inhibitor peptide binding as a simple rotation of the large and small lobes seen in the crystal structure such that the cleft between them is closed. For a substrate these changes would then allow catalysis to ensue. The hinge for this movement occurs around a glycine that is one of the protein kinase family consensus amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.