The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.
SummaryNatural genetic transformation in Streptococcus pneumoniae is controlled in part by a quorum-sensing system mediated by a peptide pheromone called competence-stimulating peptide (CSP), which acts to coordinate transient activation of genes required for competence. To characterize the transcriptional response and regulatory events occurring when cells are exposed to competence pheromone, we constructed DNA microarrays and analysed the temporal expression profiles of 1817 among the 2129 unique predicted open reading frames present in the S. pneumoniae TIGR4 genome (84%). After CSP stimulation, responsive genes exhibited four temporally distinct expression profiles: early, late and delayed gene induction, and gene repression. At least eight early genes participate in competence regulation including comX , which encodes an alternative sigma factor. Late genes were dependent on ComX for CSPinduced expression, many playing important roles in transformation. Genes in the delayed class (third temporal wave) appear to be stress related. Genes repressed during the CSP response include ribosomal protein loci and other genes involved in protein synthesis. This study increased the number of identified CSP-responsive genes from approximately 40 to 188. Given the relatively large number of induced genes (6% of the genome), it was of interest to determine which genes provide functions essential to transformation. Many of the induced loci were subjected to gene disruption mutagenesis, allowing us to establish that among 124 CSP-inducible genes, 67 were individually dispensable for transformation, whereas 23 were required for transformation.
Competence for genetic transformation in Streptococcus pneumoniae has been known for three decades to arise in growing cultures at a critical cell density, in response to a secreted protease-sensitive signal. We show that strain CP1200 produces a 17-residue peptide that induces cells of the species to develop competence. The sequence of the peptide was found to be H-Glu-Met-Arg-Leu-Ser-Lys-Phe-Phe-ArgAsp-Phe-Ile-Leu-Gln-Arg-Lys-Lys-OH. A synthetic peptide of the same sequence was shown to be biologically active in small quantities and to extend the range of conditions suitable for development of competence. Cognate codons in the pneumococcal chromosome indicate that the peptide is made riboso-
SummaryAll streptococcal genomes encode the alternative sigma factor SigX and 21 SigX-dependent proteins required for genetic transformation, yet no pyogenic streptococci are known to develop competence. Resolving this paradox may depend on understanding the regulation of sigX. We report the identification of a regulatory circuit linked to the sigX genes of mutans, pyogenic, and bovis streptococci that uses a novel small, double-tryptophan-containing sigX-inducing peptide (XIP) pheromone. In all three groups, the XIP gene (comS), and sigX have identical, non-canonical promoters consisting of 9 bp inverted repeats separated from a -10 hexamer by 19 bp. comS is adjacent to a gene encoding a putative transcription factor of the Rgg family and is regulated by its product, which we designate ComR. Deletion of comR or comS in Streptococcus mutans abolished transformability, as did deletion of the oligopeptide permease subunit oppD, suggesting that XIP is imported. Providing S. mutans with synthetic fragments of ComS revealed that seven C-terminal residues, including the WW motif, cause robust induction of both sigX and the competent state. We propose that this circuit is the proximal regulator of sigX in S. mutans, and we infer that it controls competence in a parallel way in all pyogenic and bovis streptococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.