We introduce genetic algorithms (GA) for wavefront control to focus light through highly scattering media. We theoretically and experimentally compare GAs to existing phase control algorithms and show that GAs are particularly advantageous in low signal-to-noise environments.
We introduce a phase-control holographic technique to characterize scattering media with the purpose of focusing light through it. The system generates computer-generated holograms implemented via a deformable mirror device (DMD) based on micro-electro-mechanical technology. The DMD can be updated at high data rates, enabling high speed wavefront measurements using the transmission matrix method. The transmission matrix of a scattering material determines the hologram required for focusing through the scatterer. We demonstrate this technique measuring a transmission matrix with 256 input modes and a single output mode in 33.8 ms and creating a focus with a signal to background ratio of 160. We also demonstrate focusing through a temporally dynamic, strongly scattering sample with short speckle decorrelation times.
We introduce a system capable of focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micromirror device and a field programmable gate array controller. The system shows two orders of magnitude enhancements of the focus spot relative to the background.3
The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium using two different imaging modalities with up to ten times improvement in signal-to-noise ratio and five to six times sub-acoustic resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.