This paper describes a new, compact buoy, the Air-Sea Interaction Spar (ASIS), capable of reliably and accurately measuring directional wave spectra, atmospheric surface fluxes, and radiation in the the open ocean. The ASIS buoy is a stable platform and has low flow disturbance characteristics in both atmospheric and oceanic surface boundary layers. The buoy has been deployed for sea trials in the waters off Miami, Florida; in the northeastern region of the Gulf of Mexico; and in the northwestern Mediterranean. The acquired measurements of directional wave spectra, momentum and heat fluxes, and profile data-as well as general meteorological and oceanographic parameters-obtained from the buoy are well suited for enhancing research on air-water interfacial processes, wave dynamics, remote sensing, and gas transfer. In this paper the design is described and the performance of the buoy using field data is characterized.
The evaluation of hurricane forecast skill requires ensembles of historical forecasts. The purpose of this article is not to undertake such an evaluation, but rather to demon strate the current status of satellite physical retrievals and their potential to provide valu able information for such evaluations and contribute to model improvements. Figure 3 shows a pictorial example of the 120-hour accumulated surface rainfall from satellite retrievals, and from single high-resolution forecasts from ECMWF and NASA models.Predictions The hurricane in the ECMWF forecast, though, deviates by two to three degrees east of the best track, and makes landfall between Ala bama and Florida about 12 hours late. These differences in the hurricane track and accu mulated precipitation may reflect inadequa cies in the large-scale circulation provided in the initial conditions, or imperfect model physical parameterizations, but also may be due to the system's lack of predictability.
Developments in Hurricane ForecastsAdvances in spaceborne observations and numerical weather prediction (NWP) models provide new opportunities for improving hurricane forecasts. Apart from their impor tance for NWR global atmospheric models of hurricanes and their forecasts represent an important and unique test bed of model formulations.Recent developments that include moving from synoptic-scale-resolving to mesoscaleresolving global models show some very encouraging results. In addition to increasing resolution and including more physically based parameterizations on mesoscale effects in conventional general circulation models, cloud-scale-resolving global models-in which the cloud dynamics and mesoscale processes are explicitly resolved-also are being devel oped and could be used as a parallel approach to more realistically simulate hurricanes in global models in the future.Better resolution of the hurricane struc ture and larger-scale steering circulation, along with improved initial conditions pro vided by high-resolution satellite data and sophisticated data assimilation systems, could lead to better detection, monitoring, under standing, and prediction of the genesis and development of hurricanes that have such a devastating impact on society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.