The function(s) of sleep remains a major unanswered question in biology. We assessed changes in gene expression in the mouse cerebral cortex and hypothalamus following different durations of sleep and periods of sleep deprivation. There were significant differences in gene expression between behavioral states; we identified 3,988 genes in the cerebral cortex and 823 genes in the hypothalamus with altered expression patterns between sleep and sleep deprivation. Changes in the steady-state level of transcripts for various genes are remarkably common during sleep, as 2,090 genes in the cerebral cortex and 409 genes in the hypothalamus were defined as sleep specific and changed (increased or decreased) their expression during sleep. The largest categories of overrepresented genes increasing expression with sleep were those involved in biosynthesis and transport. In both the cerebral cortex and hypothalamus, during sleep there was upregulation of multiple genes encoding various enzymes involved in cholesterol synthesis, as well as proteins for lipid transport. There was also upregulation during sleep of genes involved in synthesis of proteins, heme, and maintenance of vesicle pools, as well as antioxidant enzymes and genes encoding proteins of energy-regulating pathways. We postulate that during sleep there is a rebuilding of multiple key cellular components in preparation for subsequent wakefulness.
Form-deprivation myopia, in its early stages, is associated with only minimal changes in retinal gene expression at the level of the transcriptome. While the list of validated genes is short, each merits further study for potential involvement in the signaling cascade mediating myopia development.
In this study, we compared the effects of interleukin-2 (IL-2), IL-15, and IL-21 on gene expression, activation of cell signaling pathways, and functional properties of cells derived from CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 modulated, in a CTCL cell line, the expression of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3 in CTCL cell lines and native leukemic (Sezary) cells. However, only IL-2 and IL-15 strongly activated signal transducers and activators of transcription 5, phosphoinositide 3-kinase/Akt, and mitogen-activated protein/ extracellular signal-regulated kinase (ERK) kinase/ERK signaling pathways in the cell lines and mitogen-primed native cells. In contrast, IL-21 selectively activated signal transducers and activators of transcription 3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3 kinase-and Jak1 kinase-dependent. These findings document the vastly different effect of IL-2 and IL-15 versus IL-21 on CTCL cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T-cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, natural killer, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells. [Cancer Res 2008;68(4):1083-91]
Plus or minus lens wear induce markedly different, not opposite, alterations in retina/RPE gene expression. The initial retinal responses to defocus are quite different from those when the eye growth patterns are well established, suggesting that different mechanisms govern the initiation and persistence or progression of refractive errors. The gene lists identify promising signaling candidates and regulatory pathways for future study, including a potential role for circadian rhythms in refractive development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.