Changes in respiration rate, chemical content and chemical concentration were measured in leaves of field-grown Populus tremuloides Michx. and Quercus rubra L. trees throughout the growing season and autumnal senescence. Chlorophyll, soluble sugar, N, P, K and Mg contents and concentrations all declined during leaf senescence, whereas Ca content and concentration increased. Leaf dry mass per area declined 24 and 35% in P. tremuloides and Q. rubra, respectively, during senescence. In leaves of both species, respiration rates peaked during leaf expansion in the spring and then declined, as a result of reduced cytochrome-mediated respiration, to reach relatively constant rates by midsummer. In senescing P. tremuloides leaves, respiration rates remained relatively constant until mid-October and then declined rapidly. In senescing Q. rubra leaves, respiration rates increased in late September, as a result of the appearance of residual respiration that could not be reduced by respiratory inhibitors, and then declined quickly in early November. No changes in alternative pathway respiratory activity were observed in leaves of either species during senescence until late autumn when rates declined. Because respiration rates were correlated with both leaf sugar and nitrogen content during leaf senescence, we conclude that respiration rates were maintained or increased during leaf senescence to supply energy for degradation and mobilization of chemical constituents.
To test the theory that leaf respiration rates are inherently higher in arctic species compared with temperate species, a total of 35 species from temperate, subarctic, and arctic locations were grown under controlled conditions and leaf respiration rates were measured. Regardless of growth temperature (either 10 or 20 °C), leaf respiration rates measured at the growth temperature were independent of a species' geographic origin. In addition, salicylhydroxamic acid inhibited the alternative oxidase equally in all groups of species. Acclimation of leaf respiration to temperature was observed in all three geographic plant groups, i.e., leaf respiration rates of 20 °C-grown plants were not significantly different than rates of 10 °C-grown plants when respiration was measured at the growth temperature. These results suggest that arctic species do not have inherently high leaf respiration rates, higher alternative pathway respiration, or greater temperature acclimation ability compared with temperate species. Keywords: alternative pathway respiration, arctic, leaf respiration, subarctic, temperate, temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.