A classic example of a sustainable fishery is that targeting sockeye salmon in Bristol Bay, Alaska, where record catches have occurred during the last 20 years. The stock complex is an amalgamation of several hundred discrete spawning populations. Structured within lake systems, individual populations display diverse life history characteristics and local adaptations to the variation in spawning and rearing habitats. This biocomplexity has enabled the aggregate of populations to sustain its productivity despite major changes in climatic conditions affecting the freshwater and marine environments during the last century. Different geographic and life history components that were minor producers during one climatic regime have dominated during others, emphasizing that the biocomplexity of fish stocks is critical for maintaining their resilience to environmental change.climate change ͉ resilience ͉ Pacific salmon ͉ endangered species ͉ biodiversity A t a time of growing concern about the sustainability of many of the world's fisheries, several stand out as providing long-term sustainable yield. Among the most prominent successes are the fisheries for sockeye salmon in Bristol Bay, Alaska (Fig. 1), that have seen record returns and catches in the last two decades. This success is due in part to several factors including (i) favorable ocean conditions in recent decades, (ii) a single, accountable management agency, and (iii) a well established program of limited entry to the fishery. However, the biocomplexity of the stock structure has also played an critical role in providing stability and sustainability. Here we provide evidence for the effects of biocomplexity on sustainability and emphasize that conserving biocomplexity within fish stocks is important for maintaining their resilience to future environmental change. The Biodiversity Of Bristol Bay SockeyeHoming of Pacific salmon (Oncorhynchus spp.) to their natal sites results in reproductive isolation of populations, allowing natural selection to operate on heritable phenotypic traits, and the result is a wealth of distinct, locally adapted populations (1, 2). Sockeye salmon (Oncorhynchus nerka), for example, display a wide variety of life history types, each associated predictably with certain breeding and rearing habitats (3). The diversity of phenotypes thus reflects the adaptation of populations to the diversity of suitable habitats. Spawning by salmonid fishes generally takes place in lotic habitats, and Bristol Bay sockeye salmon spawn in streams and rivers ranging from 10 cm to several meters deep, and in substrate ranging from small gravel to cobble (4, 5). Some creeks have spring-fed ponds with much finer substrate and deeper, slowly flowing water, and these too are used for spawning. Sockeye also spawn in groundwater-fed beaches at the outwash areas of rivers and along hillsides with substantial groundwater inputs. In these habitats, sockeye may spawn from the shoreline to depths of several meters. Finally, sockeye may also spawn on the rocky beaches o...
Detecting and forecasting the effects of changing climate on natural and exploited populations represent a major challenge to ecologists and resource managers. These efforts are complicated by underlying density‐dependent processes and the differential responses of predators and their prey to changing climate. We explored the effects of density‐dependence and changing climate on growth of juvenile sockeye salmon and the densities of their zooplankton prey in the Wood River system of southwestern Alaska. We fit dynamic time‐series models to data collected between 1962 and 2002 describing growth of juvenile sockeye, timing of spring ice breakup, and summer zooplankton densities. The timing of spring breakup has moved about seven days earlier now than it was in the early 1960s. Our analyses suggest that most of this shift has been a response to the warm phase of the Pacific Decadal Oscillation that persisted from the mid‐1970s to the late 1990s. This progression toward earlier spring breakup dates was associated with warmer summer water temperatures and increased zooplankton (especially Daphnia) densities, which translated into increased sockeye growth during their first year of life. The number of spawning adults that produced each year class of sockeye had a strong negative effect on juvenile sockeye growth rates, so that the size of the density‐dependent effect was, on average, twice as large as the effect of spring breakup date. These results highlight the complexity of ecological responses to changing climate and suggest that climate warming may enhance growing conditions for juvenile salmonids in large lakes of Alaska.
Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.
The phylogeography of Sumichrast's harvest mouse (Reithrodontomys sumichrasti) was examined through maximum-likelihood and parsimony analyses of 1,130 bp of mitochondrial Cytochrome b sequence data from 43 individuals. The phylogeography of this Middle American highland forest-dwelling species was compared to that previously published for the codistributed Aztec deer mouse complex (Peromyscus aztecus/Peromyscus hylocetes complex) in order to test competing hypotheses of concerted versus independent responses of codistributed forms to past climatic fluctuations. Qualitatively, there were strong similarities in the phylogeographic patterns of the two groups, yet there were also areas of incongruence. Likelihood-ratio tests (Kishino-Hasegawa-Templeton and parametric bootstrap tests) indicated that this incongruence is significant and cannot be attributed simply to uncertainty in phylogenetic estimation, thereby falsifying the concerted-response hypothesis. Conversely, tree-reconciliation analysis of the area relationships inferred for each group separately indicated that there has been a significant history of covicariance between the two groups, falsifying the independent-response hypothesis. It appears that codistributed taxa in the geologically complex highlands of Mesoamerica share more common biogeographical history than can be accounted for by the independent-response hypothesis yet have not responded to past climatic fluctuations in the lock-step fashion predicted by the concerted-response hypothesis.
One hundred DNA sequences from the mitochondrial cytochrome-b gene of 44 species of deer mice (Peromyscus (sensu stricto), 1 of Habromys, 1 of Isthmomys, 2 of Megadontomys, and the monotypic genera Neotomodon, Osgoodomys, and Podomys were used to develop a molecular phylogeny for Peromyscus. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) were conducted to evaluate alternative hypotheses concerning taxonomic arrangements (sensu stricto versus sensu lato) of the genus. In all analyses, monophyletic clades were obtained that corresponded to species groups proposed by previous authors; however, relationships among species groups generally were poorly resolved. The concept of the genus Peromyscus based on molecular data differed significantly from the most current taxonomic arrangement. Maximum-likelihood and Bayesian trees depicted strong support for a clade placing Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys within Peromyscus. If Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are regarded as genera, then several species groups within Peromyscus (sensu stricto) should be elevated to generic rank. Isthmomys was associated with the genus Reithrodontomys; in turn this clade was sister to Baiomys, indicating a distant relationship of Isthmomys to Peromyscus. A formal taxonomic revision awaits synthesis of additional sequence data from nuclear markers together with inclusion of available allozymic and karyotypic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.