We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( VO 2 ) kinetics, skeletal muscle oxygenation (muscle tissue O 2 saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre-and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P > 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The VO 2 mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min −1 ; P = 0.03), in IPC compared with SHAM. The muscle tissue O 2 saturation index did not differ between trials (P > 0.05). Ischaemic preconditioning expedited VO 2 kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.
IntroductionThis study compared the efficacy of three commercial oral rehydration solutions (ORS) for restoring fluid and electrolyte balance, after exercise-induced dehydration.MethodHealthy, active participants (N = 20; ♀ = 3; age ∼27 y, V˙O2peak ∼52 ml/kg/min) completed three randomised, counterbalanced trials whereby intermittent exercise in the heat (∼36°C, ∼50% humidity) induced ∼2.5% dehydration. Subsequently, participants rehydrated (125% fluid loss in four equal aliquots at 0, 1, 2, 3 h) with a glucose-based (G-ORS), sugar-free (Z-ORS) or amino acid-based sugar-free (AA-ORS) ORS of varying electrolyte composition. Urine output was measured hourly and capillary blood samples collected pre-exercise, 0, 2 and 5 h post-exercise. Sodium, potassium, and chloride concentrations in urine, sweat, and blood were determined.ResultsNet fluid balance peaked at 4 h and was greater in AA-ORS (141 ± 155 ml) and G-ORS (101 ± 195 ml) than Z-ORS (−47 ± 208 ml; P ≤ 0.010). Only AA-ORS achieved positive sodium and chloride balance post-exercise, which were greater for AA-ORS than G-ORS and Z-ORS (P ≤ 0.006), as well as for G-ORS than Z-ORS (P ≤ 0.007) from 1 to 5 h.Conclusionwhen provided in a volume equivalent to 125% of exercise-induced fluid loss, AA-ORS produced comparable/superior fluid balance and superior sodium/chloride balance responses to popular glucose-based and sugar-free ORS.
Purpose: Whilst pre-exercise ischaemic preconditioning (IPC) can improve lower-body exercise performance, its impact on upper-limb performance has received little attention. This study examines the influence of IPC on upper-body exercise performance and oxygen uptake (V ̇O2 ) kinetics. Methods: Eleven recreationally-active males (24 ± 2 years) completed an arm-crank graded exercise test to exhaustion to determine the power outputs at the ventilatory thresholds (VT1 and VT2) and V ̇O2peak (40.0 ± 7.4 ml•kg −1 •min −1 ). Four main trials were conducted, two following IPC (4 × 5-min, 220 mmHg contralateral upper-limb occlusion), the other two following SHAM (4 × 5-min, 20 mmHg). The first two trials consisted of a 15-minute constant work rate and the last two time-to-exhaustion (TTE) arm-crank tests at the power equivalents of 95% VT1 (LOW) and VT2 (HIGH), respectively. Pulmonary V ̇O2 kinetics, heart rate, blood-lactate concentration, and rating of perceived exertion were recorded throughout exercise. Results: TTE during HIGH was longer following IPC than SHAM (459 ± 115 vs 395 ± 102 s, p = .004). Mean response time and change in V ̇O2 between 2-min and end exercise (ΔV ̇O2 ) were not different between IPC and SHAM for arm-cranking at both LOW (80.3 ± 19.0 vs 90.3 ± 23.5 s [p = .06], 457 ± 184 vs 443 ± 245 ml [p = .83]) and HIGH (96.6 ± 31.2 vs 92.1 ± 24.4 s [p = .65], 617 ± 321 vs 649 ± 230 ml [p = .74]). Heart rate, blood-lactate concentration, and rating of perceived exertion did not differ between conditions (all p ≥ .05). Conclusion: TTE was longer following IPC during upper-body exercise despite unchanged V ̇O2 kinetics. Highlights. Whilst pre-exercise ischaemic preconditioning can improve lower-body exercise performance and alter V ̇O2 kinetics, its impact on upper-limb performance has received little attention. . An acute bout of ischaemic preconditioning prior to arm-crank ergometry exercise significantly improved time to exhaustion compared to a sham control condition. . V ̇O2 kinetics in response to ischaemic preconditioning remained unchanged, suggesting alternative mechanisms may explain performance improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.