This study presents a rain area detection scheme that uses a gradient based adaptive technique for daytime and nighttime rain area detection and correction from reflectance and infrared (IR) brightness temperatures data of the Meteosat Second Generation (MSG) satellite. First, multiple parametric rain detection models developed from MSG’s reflectance and IR data were calibrated and validated with rainfall data from a dense network of rain gauge stations and investigated to determine the best model parameters. The models were based on a conceptual assumption that clouds characterised by the top properties, e.g., high optical thickness and effective radius, have high rain probabilities and intensities. Next, a gradient based adaptive correction technique that relies on rain area-specific parameters was developed to reduce the number and sizes of the detected rain areas. The daytime detection with optical (VIS0.6) and near IR (NIR1.6) reflectance data achieved the best detection skill. For nighttime, detection with thermal IR brightness temperature differences of IR3.9-IR10.8, IR3.9-WV73 and IR108-WV62 showed the best detection skill based on general categorical statistics. Compared to the Global Precipitation Measurement (GPM) Integrated Mult-isatellitE Retrievals for GPM (IMERG) and the gauge station data from the southwest of Kenya, the model showed good agreement in the spatial dynamics of the detected rain area and rain rate.
By increased rural-urban migration in many African countries, the assessment of changes in catchment hydrologic responses due to urbanization is critical for water resource planning and management. This paper assesses hydrological impacts of urbanization on two medium-sized Zimbabwean catchments (Mukuvisi and Marimba) for which changes in land cover by urbanization were determined through Landsat Thematic Mapper (TM) images for the years 1986, 1994 and 2008. Impact assessments were done through hydrological modeling by a topographically driven rainfall-runoff model (TOPMODEL). A satellite remote sensing based ASTER 30 metre Digital Elevation Model (DEM) was used to compute the Topographic Index distribution, which is a key input to the model. Results of land cover Woodlands decreased by more than 40% with a greater decrease in Marimba than Mukuvisi catchment. Simulations using TOPMODEL in Marimba and Mukuvisi catchments indicated streamflow increases of 84.8 % and 73.6 %, respectively, from 1980 to 2010. These increases coincided with decreases in woodlands and increases in urban areas for the same period. The use of satellite remote sensing data to observe urbanization trends in semi-arid catchments and to represent catchment land surface characteristics proved to be effective for rainfall-runoff modeling. Findings of this study are of relevance for many African cities, which are experiencing rapid urbanization but often lack planning and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.