We tested the activity of the dopaminergic neuron differentiation factor sonic hedgehog, its downstream transcription factor target Gli-1, and an orphan nuclear receptor, Nurr-1, necessary for the induction of the dopaminergic phenotype of nigrostriatal neurons, in an in vivo model of nigrostriatal neurodegeneration. Our preliminary experiments demonstrated that all three constructs expressed the proper molecules and that these had the predicted biological activities in vitro. We expressed the N-terminal of sonic hedgehog (ShhN) and the Gli-1 and Nurr-1 entire coding regions from highly purified, and quality controlled, replication-defective adenoviral vectors injected into the brains of rats and used the dopaminergic growth factor GDNF as a positive control. The neurotoxin 6-hydroxydopamine was used to lesion the nigrostriatal dopaminergic innervation; RAd-ShhN and RAd-Gli-1 protected dopaminergic neuronal cell bodies in the substantia nigra, but not axonal terminals in the striatum, from 6-OHDA-induced cell death, while RAd-Nurr-1 was ineffective in protecting either cell bodies or axons. RAd-GDNF was able to protect both the dopaminergic cell bodies and the striatal axon terminals. Our results establish for the first time, to the best of our knowledge, that gene transfer of ShhN and one of its target transcription factors can selectively protect dopaminergic nigrostriatal neuronal cell bodies from a specific neurotoxic insult. Selective protection of nigrostriatal dopaminergic cell bodies by the differentiation factor ShhN and the transcription factor Gli-1 was achieved in a neurotoxic model that eliminates more than 70% of the nigral neurons under consideration. Differentiation and transcription factors can thus be used for the treatment of neurodegeneration by gene therapy.
Nigrostriatal neurons degenerate during Parkinson's disease. Experimentally, neurotoxins such as 6-hydroxydopamine (6-OHDA) in rodents, and MPTP in mice and nonhuman primates, are used to model the disease-induced degeneration of midbrain dopaminergic neurons. Glialcell-derived neurotrophic factor (GDNF) is a very powerful neuroprotector of dopaminergic neurons in all species examined. However, recent reports have indicated the possibility that GDNF may, in the long term and if expressed in an unregulated manner, exert untoward effects on midbrain dopaminergic neuronal structure and function. Although GDNF remains a powerful neurotrophin, the search for alternative therapies based on alternative and complementary mechanisms of action to GDNF is warranted. Recently, recombinant adenovirus-derived vectors encoding the differentiation factor Sonic Hedgehog (Shh) and its downstream transcriptional activator (Gli1) were shown to protect dopaminergic neurons in the substantia nigra pars compacta from 6-OHDA-induced neurotoxicity in rats in vivo. A pancellular human CMV (hCMV) promoter was used to drive the expression of both Shh and Gli1. Since Gli1 is a transcription factor and therefore exerts its actions intracellularly, we decided to test whether expression of Gli1 within neurons would be effective for neuroprotection. We demonstrate that neuronal-specific expression of Gli1 using the neuron-specific Ta1 a-tubulin (Ta1) promoter was neuroprotective, and its efficiency was comparable to the pancellular strong viral hCMV promoter. These results suggest that expression of the transcription factor Gli1 solely within neurons is neuroprotective for dopaminergic neurons in vivo and, furthermore, that neuronal-specific promoters are effective within the context of adenovirus-mediated gene therapy-induced neuroprotection of dopaminergic midbrain neurons. Since cell-type specific promoters are known to be weaker than the viral hCMV promoter, our data demonstrate that neuronal-specific expression of transcription factors is an effective, specific, and sufficient targeted approach for neurological gene therapy applications, potentially minimizing side effects due to unrestricted promiscuous gene expression within target tissues.
For many years it has been virtually impossible to transfer genes into brain cells either to study or manipulate molecular, cellular, or, in vivo, behavioral processes. In addition to the physical barriers that protect the brain (bone and three layers of meninges), the earliest gene delivery systems, the retroviral vectors, require cell division to integrate the transgenes into their genomes to express any transgenes. Thus they limited transduction to dividing cells of the nervous system, e.g., astrocytes and oligodendrocytes, neurons in the neonatal brain undergoing cell division, or non-neural cells such as fibroblasts that could then be transplanted to the brain. Because neurons in the adult brain do not divide, retroviruses were of limited use to neuro-biologists wanting to manipulate the molecular makeup of neurons in vivo (Fisher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.