Discovering that calcitonin-related peptide (CGRP) plays a key role in the complex pathophysiology of migraine has allowed us to make great strides in the development of new approaches for acute and preventive treatment. This evidence has led to the development of small molecules antagonist molecules of the CGRP receptor (“gepants”) and of a new class of medications called “Ditans”. This review presents the data from clinical trials reporting the efficacy, safety, and tolerability of the new drugs used in the treatment of migraines. Evidences show that therapeutic approaches targeted to CGRP have the potential to transform the clinical management of migraine, even though its appropriate place has yet to be determined with accuracy.
Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype–phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype–phenotype association data is needed to enable the clinical use of sequencing data.
The aim of this observational study was to develop a new quantitative liquid chromatography-mass spectrometry (LC-MS/MS) method for Therapeutic-Drug-Monitoring (TDM) of psychotropic drugs in seminal fluid to investigate potential gonadotoxic effects in patients with reduced fertility. After the validation of the LC-MS/MS method for psychotropics’ levels determination in seminal fluid, we included 20 male partners of infertile couples with idiopathic and/or unexplained male infertility, treated with psychotropic medications for more than 3 months and 10 untreated fertile controls. General and andrological clinical examination, semen analysis and seminal drugs, and metabolites levels determination were performed for each subject. Of the 20 patients included, 6 were treated with antidepressants; 4 with benzodiazepines and 10 with antipsychotics. Seminal drugs and metabolites levels were detectable in all samples. In particular, alprazolam, olanzapine, and levetiracetam showed seminal and serum similar concentrations, while fluoxetine, quetiapine, and aripiprazole were detectable, but seminal levels were significantly lower than the serum therapeutic range. Sperm progressive motility was significantly reduced in subjects treated with psychotropic drugs compared to the untreated controls (p = 0.03). Sperm concentration and progressive motility were significantly reduced in subjects treated with antipsychotics compared to the untreated controls and to the other classes of psychotropics (p < 0.05). In conclusion, this study reports a validated LC-MS/MS method for the detection of seminal psychotropic levels and preliminary data suggesting a potential correlation of seminal psychotropics with alterations of sperm concentration and motility. Pending larger studies, semen TDM might represent a new pivotal tool in the clinical management of reduced fertility in males treated with psychotropic medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.