Gastric cancer remains the fourth most commonly diagnosed cancer and is the second leading cause of cancer-related mortality worldwide. The aim of this study was to investigate the effects of canolol on the proliferation and apoptosis of SGC-7901 human gastric cancer cells and its relevant molecular mechanisms. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to observe the effect of canolol on the proliferation of SGC-7901 human gastric adenocarcinoma cells. The results showed that SGC-7901 cells exhibited a marked dose-dependent reduction in the proliferation rate. The survival rate of the cells was 88.86±1.58% at 50 μmol/l, decreasing to 53.73±1.51% at 800 μmol/l (P<0.05). By contrast, canolol had no significant toxicity on the human gastric mucosal epithelial cell line GES-1. The vivid images of cell morphology using an inverted microscope provided confirmation of the MTT assay. Treatment of SGC-7901 cells with canolol resulted in apoptosis demonstrated by flow cytometry. Furthermore, canolol downregulated the mRNA levels of COX-2, but had no significant effect on the mRNA expession of the Bax and Bcl-2 genes. These findings suggest that canolol has potential to be developed as a new natural anti-gastric carcinoma agent.
Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs) is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20) in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM)-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP) activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBa was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBa and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.