Thermal stability of HfO2 high-k gate dielectric on GaAs is investigated. Compared to HfO2 gate dielectric, significant improvements in interfacial properties as well as electrical characteristics were found by constructing a Al2O3/HfO2/Al2O3 dielectric stack. At elevated temperatures, the amorphous Al2O3 layers were effective in inhibiting crystallization of HfO2. Since the passivating Al2O3 layers prevent interfacial oxide and trap charge formation, it aids in reducing the increasing rate of equivalent oxide thickness as well as capacitance-voltage hysteresis. Transmission electron microscopy and x-ray photoelectron spectroscopy data supported the improved electrical characteristic of GaAs metal-oxide-semiconductor capacitors with Al2O3/HfO2/Al2O3 gate dielectric stack.
The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm−2 · eV−1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process.
Articles you may be interested inLow-temperature plasma-enhanced atomic layer deposition of HfO2/Al2O3 nanolaminate structure on Si J. Vac. Sci. Technol. B 33, 01A101 (2015); 10.1116/1.4895010Effects of rapid thermal annealing on the properties of HfO2/La2O3 nanolaminate films deposited by plasma enhanced atomic layer deposition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.