The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GTPase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (ΔCsrac1) via homologous recombination to investigate the functional roles of CsRAC1. The ΔCsrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although ΔCsrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, ΔCsrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that ΔCsrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovillei-pepper fruit pathosystem.
The aim of this study was to investigate the effects of green light, added with red and blue LEDs, on the growth, leaf microstructure and quality of spinach plants. Plants were transplanted and grown hydroponically for 30 days under different combinations of red:blue with a 4:1 ratio (R4B1), red:blue:green with a 5:2:3 ratio (R5B2G3) and red:blue:green with a 1:1:1 ratio (R1B1G1), at a 190 µmoL m−2·s−1 photosynthetic photon flux density (PPFD). The results showed that green light, added to red and blue LEDs at a reasonable ratio, could reduce the growth, leaf microstructure and quality of spinach plants, but not the organic acid content. The highest values for the growth parameters, photosynthetic pigments, leaf structure characteristics and quality of the spinach plant were observed for the R4B1 treatment, but not for the organic acid content. Therefore, our results suggest that green light added to red and blue LEDs at a reasonable ratio is not suitable for the growth of spinach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.