Non-alcoholic fatty liver disease is associated with inhibited AMP-activated kinase (AMPK) and activation of sterol regulatory element binding protein 1 (SREBP-1). AMPK phosphorylation inhibits SREBP-1, a major transcription factor of de novo lipogenesis, by inhibiting the liver X receptor (LXR) or by direct phosphorylation. Resveratrol, a polyphenol, has regulatory effects on hepatic lipid metabolism as a potent AMPK activator. In this study, we evaluated the anti-steatogenic effects of resveratrol and its derivatives and identified the molecular mechanism in vitro and in vivo. Resveratrol and its derivatives decreased lipid accumulation by free fatty acids (FFA mixture; 0.5 mM, oleic acid:palmitic acid = 2: 1) in H4IIEC3 cells. Synthesized derivatives of resveratrol had lower cytotoxicity than the parental molecule with similar potency. SY-102 suppressed SREBP-1 maturation by T0901317, an LXR agonist, and decreased SRE luciferase activity and the mRNA levels of lipogenic genes. Inhibition of AMPK by pre-treatment with compound C completely blocked the effects of SY-102. To evaluate their efficacy in vivo, mice were fed a high-fat diet for 5 days, and resveratrol or SY-102 was administered orally for the last 2 days. Oral administration of the SY-102 increased AMPK phosphorylation, followed by reduced hepatic triglyceride accumulation to a similar extent as resveratrol. These data demonstrate that SY-102, a synthesized derivative of resveratrol, might provide a promising therapeutic effect against fatty liver disease.
Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRa activation and explored whether these derivatives could attenuate steatosis in mice. N-(4-trifluoromethylphenyl) 3,4-dimethoxycinnamamide (TFCA) decreased the luciferase activity in LXRE-tkLuc-transfected cells and also suppressed ligand-induced lipid accumulation and expression of the lipogenic genes in murine hepatocytes. Furthermore, it significantly attenuated hepatic neutral lipid accumulation in a ligand-induced fatty liver mouse system. Modeling study indicated that TFCA inhibited activation of the LXRa ligand-binding domain by hydrogen bonding to Arg305 in the H5 region of that domain. It regulated the transcriptional control exerted by LXRa by influencing coregulator exchange; this process involves dissociation of the thyroid hormone receptor-associated proteins (TRAP)/DRIP coactivator and recruitment of the nuclear receptor corepressor. These results show that TFCA has the potential to attenuate ligand-induced lipogenesis and fatty liver by selectively inhibiting LXRa in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.