BackgroundsTwo SNPs in melatonin receptor 1B gene, rs10830963 and rs1387153 showed significant associations with fasting plasma glucose levels and the risk of Type 2 Diabetes Mellitus (T2DM) in previous studies. Since T2DM and gestational diabetes mellitus (GDM) share similar characteristics, we suspected that the two genetic polymorphisms in MTNR1B may be associated with GDM, and conducted association studies between the polymorphisms and the disease. Furthermore, we also examined genetic effects of the two polymorphisms with various diabetes-related phenotypes.MethodsA total of 1,918 subjects (928 GDM patients and 990 controls) were used for the study. Two MTNR1B polymorphisms were genotyped using TaqMan assay. The allele distributions of SNPs were evaluated by x2 models calculating odds ratios (ORs), 95% confidence intervals (CIs), and corresponding P values. Multiple regressions were used for association analyses of GDM-related traits. Finally, conditional analyses were also performed.ResultsWe found significant associations between the two genetic variants and GDM, rs10830963, with a corrected P value of 0.0001, and rs1387153, with the corrected P value of 0.0008. In addition, we also found that the two SNPs were associated with various phenotypes such as homeostasis model assessment of beta-cell function and fasting glucose levels. Further conditional analyses results suggested that rs10830963 might be more likely functional in case/control analysis, although not clear in GDM-related phenotype analyses.ConclusionThere have been studies that found associations between genetic variants of other genes and GDM, this is the first study that found significant associations between SNPs of MTNR1B and GDM. The genetic effects of two SNPs identified in this study would be helpful in understanding the insight of GDM and other diabetes-related disorders.
Previously we showed that Mycobacterium paratuberculosis culture filtrates (CFs) contain more antigens that react with sera from infected cattle than do cellular extracts of the organism. The goal of the present study was to identify proteins of potential diagnostic value among these CF proteins. Proteins of potential interest were first separated by 2-DE. Roughly 240 CF protein spots were detected on CBB-stained gels using Phoretix 2D software. Of these, 83% reacted with serum from M. paratuberculosis-infected cattle in immunoblots. When bovine serum was absorbed with M. phlei antigens, however, only 37 of these antigenic protein spots were reactive. Twenty-four of these spots were selected for identification based on their immunoblot staining intensity and differences in pI and mass. A total of 14 proteins were ultimately identified by MS and BLAST searches as ModD, PepA, ArgJ, CobT, Antigen 85C, and nine hypothetical proteins. N-terminal peptide analysis of PepA, Antigen 85C, ModD, MAP1693c, MAP2168c, and MAP1022c showed that each protein has 27-39 amino acids that may function as a signal sequence suggesting they are secreted through a Sec-dependent pathway. These 14 proteins from M. paratuberculosis CF are strong candidates for use as antigens for improved serodiagnostic tests for bovine paratuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.