Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells.
The mechanisms of the oxygen reduction reaction (ORR) on defective graphene-supported Pt 13 nanoparticles have been investigated to understand the effect of defective graphene support on the ORR and predict details of ORR pathways. We employed density functional theory (DFT) predictions using the projector-augmented wave (PAW) method within the generalized gradient approximation (GGA). Free energy diagrams for the ORR over supported and unsupported Pt 13 nanoparticles were constructed to provide the stability of possible intermediates in the electrochemical reaction pathways. We demonstrate that the defective graphene support may provide a balance in the binding of ORR intermediates on Pt 13 nanoparticles by tuning the relatively high reactivity of free Pt 13 nanoparticles that bind the ORR intermediates too strongly subsequently leading to slow kinetics. The defective graphene support lowers not only the activation energy for O 2 dissociation from 0.37 to 0.16 eV, but also the energy barrier of the rate-limiting step by reducing the stability of HO* species. We predict the ORR mechanisms via direct four-electron and series two-electron pathways. It has been determined that an activation free energy (0.16 eV) for O 2 dissociation from adsorbed O 2 * at a bridge site on the supported Pt 13 nanoparticle into O* + O* species (i.e., the direct pathway) is lower than the free energy barrier (0.29 eV) for the formation of HOO* species from adsorbed O 2 * at the corresponding atop site, indicating that the direct pathway may be preferred as the initial step of the ORR mechanism. Also, it has been observed that charge is transferred from the Pt 13 nanoparticle to both defective graphene and the ORR intermediate species.
The structural and electronic properties of Pt13 nanoparticles adsorbed on monovacancy defective graphene have been determined to understand oxygen adsorption on Pt nanoparticles based upon density functional theory predictions using the generalized gradient approximation. We demonstrate that a monovacancy site of graphene serves a key role as an anchoring point for Pt13 nanoparticles, ensuring their stability on defective graphene surfaces and suggesting their enhanced catalytic activity toward the interaction with O2. Strong hybridization of the Pt13 nanoparticle with the sp2 dangling bonds of neighboring carbon atoms near the monovacancy site leads to the strong binding of the Pt13 nanoparticle on defective graphene (−7.45 eV in adsorption energy). Upon both adsorption of the Pt13 nanoparticle on defective graphene and O2 on Pt13–defective graphene, strong charge depletion of the Pt atom at the interfaces of Pt–C and Pt–O2 is observed. Pt13 nanoparticles are able to donate charge to both defective graphene and O2. The Pt13–defective graphene complex shows an O2 adsorption energy of −2.30 eV, which is weaker than the O2 adsorption energy of −3.92 eV on a free Pt13 nanoparticle. Considering the strong stability of the Pt nanoparticles and relatively weaker O2 adsorption energy due to the defective graphene support, we expect that the defective graphene support may increase the catalytic activity of Pt nanoparticles compared to flat Pt metal surfaces, not only by preventing sintering of Pt nanoparticles due to the strong anchoring nature of the graphene defect sites but also by providing a balance in the O2 binding strength that may allow for enhanced catalyst turnover.
Edge-exposed MoS2 nano-assembled structures are designed for high hydrogen evolution reaction activity and long term stability. The number of sulfur edge sites of nano-assembled spheres and sheets is confirmed by Raman spectroscopy and EXAFS analysis. By controlling the MoS2 morphology with the formation of nano-assembled spheres with the assembly of small-size fragments of MoS2, the resulting assembled spheres have high electrocatalytic HER activity and high thermodynamic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.