In this study, we aimed to characterize the fish community structure and identify the drivers contributing to homogenization/differentiation processes in four tributaries to the Pearl River, Guangxi Province, China, over the past few decades. We sampled 22 sites seasonally from 2013 through 2015, and these sites were selected based on archived records of previous sampling conducted in the 1980s. Jaccard's faunal similarity index, cluster analysis, and canonical correspondence analysis (CCA) were applied to describe the homogenization/differentiation of fish community and illustrate the potential effectors. The number of fish species present in three of the four sampled tributaries declined dramatically over the past 30 years, leading toward a trend of increased fish community homogeneity throughout the watershed. Results from multidimensional scaling and cluster analyses allowed us to divide the study area into two distinct ecoregions. Four species (yellow catfish Pelteobagrus fulvidraco, pond loach Misgurnus anguillicaudatus, Nile tilapia Oreochromis niloticus, and sharpbelly Hemiculter leucisculus) were considered to be indicative fish species contributing more than 5% of the dissimilarity between the two eco‐regions according to the results of similarity percentage procedure. Results from CCA revealed that pH and latitude corresponded with the dominant fish species of each respective tributary. More specifically, CCA results allowed us to classify dominant fish species into three distinct groups. The first group was mainly located in Guijiang characterized by higher latitudes and lower pH values, the second group was widespread in the four tributaries, and the last group was primarily distributed in Yujiang, Youjiang, and Zuojiang characterized by lower latitudes and higher pH values. Spatial differentiation of fish community structure and temporal homogeneity of species composition were attributed to the joint actions of human interventions including construction of dams and introductions of exotic fish species that led to habitat degeneration and fragmentation, and unequal interspecies competitions.
Summary
Length–weight relationships (LWRs) were estimated for eight native fish species collected in the lower reaches of the Pearl River, Guangdong Province, South China. Fish were sampled in March and September 2014 and January 2015, using gillnets with various mesh sizes (5–8 cm) and trawl nets with a 3 cm mesh size. A total of 568 specimens of the eight species were analyzed. The r2 values for these species ranged from 0.951 to 0.991. The b values ranged from 3.00 for Takifugu ocellatus and Moolgarda cunnesius, to 3.57 for Clupanodon thrissa. New maximum total lengths are recorded for Takifugu ocellatus (17.6 cm) and Liza carinata (24.4 cm). For five species (Clupanodon thrissa, Megalobrama terminalis, Collichthys lucidus, Coilia grayii, Takifugu ocellatus), the LWRs are presented to fishbase for the first time.
An efficient photodetector (PD) is a key component in silicon-based photonic integrated circuits (PICs). III–V PDs with low dark current density, large bandwidth, and wide operation wavelength range have become increasingly important for Si photonics in various applications. Monolithic integration of III–V PDs on Si by direct heteroepitaxy exhibits the lowest cost, the largest integration density, and the highest throughput. As the research of integrating III–V lasers on Si flourishes in the last decade, various types of III–V PDs on Si with different device structures and absorption materials have also been developed. While the integration of III–V lasers on Si using various technologies has been systematically reviewed, there are few reviews of integrating III–V PDs on Si. In this article, we review the most recent advances in III–V PDs directly grown on Si using two different epitaxial techniques: blanket heteroepitaxy and selective heteroepitaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.