Abnormal aggregation of α-synuclein and sustained microglial activation are important contributors to the pathogenic processes in Parkinson's disease. However, the relationship between disease-associated protein aggregation and microglia-mediated neuroinflammation remains unknown. Here, using a combination of in silico, in vitro, and in vivo approaches, we show that extracellular α-synuclein released from neuronal cells is an endogenous agonist for toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia. TLR2 ligand activity of α-synuclein is conformation-sensitive; only specific types of oligomer can interact with and activate TLR2. This paracrine interaction between neuron-released oligomeric α-synuclein and TLR2 in microglia suggests that both of these proteins are novel therapeutic targets for modification of neuroinflammation in Parkinson's disease and related neurological diseases.
Abnormal deposition and intercellular propagation of α-synuclein plays a central role in the pathogenesis of disorders such as Parkinson's Disease (PD) and dementia with Lewy bodies (DLB). Previous studies demonstrated that immunization against α-synuclein resulted in reduced α-synuclein accumulation and synaptic loss in a transgenic (tg) mouse model, highlighting the potential for immunotherapy. However, the mechanism by which immunization prevents synucleinopathy-associated deficits remains unknown. Here, we show that antibodies against α-synuclein specifically target and aid in clearance of extracellular α-synuclein proteins by microglia, thereby preventing their actions on neighboring cells. Antibody-assisted clearance occurs mainly in microglia through the Fcγ receptor, and not in neuronal cells or astrocytes. Stereotaxic administration of antibody into the brains of α-synuclein tg mice prevented neuron-to-astroglia transmission of α-synuclein and led to increased localization of α-synuclein and the antibody in microglia. Furthermore, passive immunization with α-synuclein antibody reduced neuronal and glial accumulation of α-synuclein and ameliorated neurodegeneration and behavioral deficits associated with α-synuclein overexpression. These findings provide an underlying mechanistic basis for immunotherapy for PD/DLB and suggest extracellular forms of α-synuclein as potential therapeutic targets.
Parkinson's disease (PD) is characterized by selective and progressive degeneration of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SNpc) and by abnormal aggregation of α -synuclein. Previous studies have suggested that DA can interact with α -synuclein, thus modulating the aggregation process of this protein; this interaction may account for the selective vulnerability of DA neurons in patients with PD. However, the relationship between DA and α -synuclein, and the role in progressive degeneration of DA neurons remains elusive. We have shown that in the presence of DA, recombinant human α -synuclein produces non-fibrillar, SDS-resistant oligomers, while β-sheet-rich fibril formation is inhibited. Pharmacologic elevation of the cytoplasmic DA level increased the formation of SDS-resistant oligomers in DA-producing neuronal cells. DA promoted α -synuclein oligomerization in intracellular vesicles, but not in the cytosol. Furthermore, elevation of DA levels increased secretion of α-synuclein oligomers to the extracellular space, but the secretion of monomers was not changed. DA-induced secretion of α -synuclein oligomers may contribute to the progressive loss of the dopaminergic neuronal population and the pronounced neuroinflammation observed in the SNpc in patients with PD.
Aims: Abnormal accumulation of a-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce a-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on a-synuclein oligomerization and cell-to-cell transmission of this protein. Results: Incubation with HNE promoted the oligomerization of recombinant human a-synuclein via adduct formation at the lysine and histidine residues. HNE-induced a-synuclein oligomers evidence a little b-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric a-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of a-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified a-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of a-synuclein proteins. Innovation and Conclusion: These results indicate that HNE induces the oligomerization of a-synuclein through covalent modification and promotes the cell-to-cell transfer of seedingcapable oligomers, thereby contributing to both the initiation and spread of a-synuclein aggregates. Antioxid. Redox Signal. 18,[770][771][772][773][774][775][776][777][778][779][780][781][782][783]
Parkinson's disease (PD) is a difficult disease to diagnose although it is the second most common neurodegenerative disease. Recent studies show that exosome isolated from urine contains LRRK2 or DJ-1, proteins whose mutations cause PD. To investigate a potential use for urine exosomes as a tool for PD diagnosis, we compared levels of LRRK2, α-synuclein, and DJ-1 in urine exosomes isolated from Korean PD patients and non-PD controls. LRRK2 and DJ-1, but not α-synuclein, were detected in the urine exosome samples, as reported previously. We initially could not detect any significant difference in these protein levels between the patient and the control groups. However, when age, disease duration, L-dopa daily dose, and gender were considered as analytical parameters, LRRK2 and DJ-1 protein levels showed clear gender-dependent differences. In addition, DJ-1 level was significantly higher (1.7-fold) in male patients with PD than that in male non-PD controls and increased in an age-dependent manner in male patients with PD. Our observation might provide a clue to lead to a novel biomarker for PD diagnosis, at least in males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.