Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by impairments in social interactions and communication, restricted interests and repetitive behaviors. Several studies report a high prevalence of gastrointestinal (GI) symptoms in autistic individuals. Cumulative evidence reveals that the gut microbiota and its metabolites (especially short-chain fatty acids, SCFAs) play an important role in GI disorders and the pathogenesis of ASD. However, the composition of the gut microbiota and its association with fecal SCFAs and GI symptoms of autistic children remain largely unknown. In the present study, we sequenced the bacterial 16S rRNA gene, detected fecal SCFAs, assessed GI symptoms and analyzed the relationship between the gut microbiome and fecal SCFAs in autistic and neurotypical individuals. The results showed that the compositions of the gut microbiota and SCFAs were altered in ASD individuals. We found lower levels of fecal acetic acid and butyrate and a higher level of fecal valeric acid in ASD subjects. We identified decreased abundances of key butyrate-producing taxa (Ruminococcaceae, Eubacterium, Lachnospiraceae and Erysipelotrichaceae) and an increased abundance of valeric acid associated bacteria (Acidobacteria) among autistic individuals. Constipation was the only GI disorder in ASD children in the present study. We also found enriched Fusobacterium, Barnesiella, Coprobacter and valeric acid-associated bacteria (Actinomycetaceae) and reduced butyrate-producing taxa in constipated autistic subjects. It is suggested that the gut microbiota contributes to fecal SCFAs and constipation in autism. Modulating the gut microbiota, especially butyrate-producing bacteria, could be a promising strategy in the search for alternatives for the treatment of autism spectrum disorder.
A new series of etherification chalcone derivatives were designed and synthesized through Willimison etherification and Claisen-Schmidt condensation. Among them, compound 2-c which was given chemical name of S17, has been successfully screened out as the most potent one on gastric cancer cell line(MGC803) through the investigation for their effects against the growth of five cancer cell lines (EC109, HepG2, MCF7, MGC803, SKNSH). S17 exhibited strong anti-proliferative activity on other two gastric cancer cells (HGC27 and SGC7901), but less cytotoxicity to non-malignant gastric epithelial cells GES1. S17 potently killed gastric cancer cells with causing modulation of Bcl-2 family proteins and activation of caspase 9/3 cascade. S17 also up-regulated DR5 expression and DR5 knockdown partially reversed S17-induced apoptosis, caspase activation and MMP decrease. S17 robustly induced generation of ROS with Keap/Nrf2 pathway activated and the application of ROS scavenger N-acetyl cysteine (NAC) completely blocked these effects by S17 in MGC803 cells. Intraperitoneal administration of S17 significantly inhibited the growth of MGC803 cells in vivo in a xenograft mouse model without observed toxicity. These results indicated that S17 is a leadbrominated chalcone derivate and deserves further investigation for prevention and treatment of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.