Here, we demonstrate a new strategy of air filtration based on an Al-coated conductive fibrous filter for high efficient nanoparticulate removals. The conductive fibrous filter was fabricated by a direct decomposition of Al precursor ink, AlH{O(CH)}, onto surfaces of a polyester air filter via a cost-effective and scalable solution-dipping process. The prepared conductive filters showed a low sheet resistance (<1.0 Ω sq), robust mechanical durability and high oxidative stability. By electrostatic force between the charged fibers and particles, the ultrafine particles of 30-400 nm in size were captured with a removal efficiency of ∼99.99%. Moreover, the conductive filters exhibited excellent performances in terms of the pressure drop (∼4.9 Pa at 10 cm s), quality factor (∼2.2 Pa at 10 cm s), and dust holding capacity (12.5 μg mm). After being cleaned by water, the filtration efficiency and pressure drop of the conductive filter was perfectly recovered, which indicates its good recyclability. It is expected that these promising features make the conductive fibrous filter have a great potential for use in low-cost and energy-efficient air cleaning devices as well as other relevant research areas.
The potential of the electrospray technique in analyzing the structure of nonspherical colloidal particles that are below 100 nm in volume-equivalent diameter was demonstrated by online size measurement using a differential mobility analyzer (DMA) with a condensation nucleus counter (CNC) system. The measured mobility of gold nanorods was confirmed by electron microscope images and the theoretical calculation of particle mobility using the dynamic shape factor and slip correction factor. To evaluate the mobility, rod particles were modeled as both a cylinder and a prolate spheroid. This study also showed that the organic surfactant coated on rod particles might be removed and that the rod particles became spherical upon the elevation of the ambient temperature during the gas-phase dispersion of colloidal nanoparticles. Moreover, the thickness of the surfactants coated on rod particles was estimated by comparing the theoretically and experimentally obtained mobilities.
Through the direct decomposition of an Al precursor ink AlH3{O(C4H9)2}, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.