3This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.In shipbuilding and offshore plant construction, pipe-stools of various types are installed. Moreover, these are many quantities but they must be installed in a successive manner. Due to these characteristics the pipe-stool installation processes easily tends to cause the schedule delays in the overall production processes. In order to reduce delay, the goal of this study is to predicts production's lead time before manufacturing. Through this predictions it's expected to reduce total production's lead time by improving it's process. First of all, we made MLR(Multiple Linear Regression) and PLSR(Partial Least Square Regression) model to predict pipe-spool's lead time and then compared predictability of MLR and PLSR model. If a explanatory variable is added, it will be possible to predict results precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.