Cold bending is a characteristic of significance for the beautiful curved glass curtain walls, because it affects them in terms of energy-efficiency and cost-efficiency. The increasing engineering projects call for more special studies on the mechanical properties of cold-bent glass panels, especially when the walls are built by insulating glass that is currently widely used while its relevant research is very scarce. This paper is devoted to studying the mechanical properties of anticlastic cold-bent insulating glass while taking different factors into consideration, including glass thickness, cold-bent torsion rate and cavity thickness. 9 pieces of insulating glass were manufactured for anticlastic cold-bending test and their coupled effect with identical load is also studied, and numerical finite element analysis sessions were carried out to simulate the experimental results for each one of them. Further, we analyzed the stress distribution performance of the sample pieces under cold bending and a uniform load, followed by discussions about stress transfer controls in glass plates. The results showed that the cold-bent control stress is on the surface with direct loads from cold bending and close to the cold-bent corner on the short edge, and it is transferred from the parts around the corner to the center when the uniform load plays a leading role in generating stress. This transfer could occur under a relatively small load with a small cold-bent torsion rate. A higher cold-bent torsion rate in cold bending contributed mostly to greater center stress in the glass, and as the glass thickness grows, stress and deflection at the plate center would significantly drop. However, the effect of cavity thickness on the anticlastic mechanical response of insulating glass was found to be trivial.
Because of convenient and price cheap, microwave therapy is an effective method to treat leukemia now. However it is quite difficult to detect with nondestrctive method and control accurately the temperature inside the purifying material exposed to microwaves. If the temperature is lower, the luekimic cell can not be killed effectively. But if the temperature is too high, the normal and cancer cell should be killed together. In this paper, the influence factors on the temperature variation in suspensions exposed to microwaves were studied so as to the temperature can be controlled effectively. The results show that there are many factors influencing on the temperature change in suspensions exposed to microwaves, and among them the influence of microwaves power is the biggest. The surface temperature was measured by a temperature sensor, then the inside temperature can be calculated according to the difference between inside and outside liquids. Further, an automatic control system of microwave power was used to control the inside temperature in an appropriate range, at which the normal cells were protected and the cancer cell were killed effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.