A culture system that is capable of providing even and uniform distribution and
deposition of cells and extracellular matrix (ECM) is desired to enhance biological functions of the tissue-engineered artificial dermis (TEADs). For this purpose, we have developed a perfusion culture system that offers uniform exchange of nutrients and gases along the scaffold. Viability and effectiveness of the system were investigated by comparing biological and mechanical properties of TEADs. Results showed that the TEADs constructed by the perfusion culture system revealed significantly increased cell growth, ECM synthesis, and elastic modulus compared to those by the conventional static culture system. In addition, histological findings indicated that cells were more evenly distributed and ECM deposition increased in TEADs with the perfusion culture system. Therefore, it can be suggested that the perfusion culture system can constitute a more promising
approach for constructing the TEADs.
Fibrin is a natural polymer with excellent biocompatibility and widely used as a cell
delivery vehicle in tissue engineering. However, fibrin of low concentration is not able to promote cell growth and differentiation within a desired time because of contraction and biodegradation of cell-seeded matrices. In this study we investigated effects of combining fibrin with collagen on growth and osteogenic differentiation of bone marrow stromal cells (BMSCs). Rabbit BMSCs-populated fibrin hydrogels with or without collagen were fabricated and cultured by the free floating method for 4 weeks. The DNA content of fibrin/collagen matrix significantly increased the growth of BMSCs compared to the fibrin-only matrix at 2week. Alkaline phosphatase activity was significantly higher in the fibrin/collagen matrix (71.0 nmol of p-nitrophenol /min/disc) than the fibrin-only matrix (45.1 nmol of p-nitrophenol /min/disc). Deposition of calcium was not significantly different between two groups. Histological examination also revealed more matured organization and deposition of collagen fibers and more concentric calcium deposition in the
fibrin/collagen matrix compared to the fibrin-only matrix. These results indicated that
fibrin/collagen matrix could be more effective than fibrin alone in supporting growth and osteogenic differentiation of BMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.