A vertically orientated ultrasonic transducer contained within a closed cylindrical Pyrex tube was used to study the acoustic streaming flow within a cylindrical container. A particle-image velocimetry (PIV) system incorporating fluorescent 1.5 μm seeding particles suspended in a mixture of diethyl-phthalate and ethanol, whose optical index was matched to that of Pyrex, was used to allow for undistorted PIV imaging within the Pyrex tube. Temperature on the end-wall surface and acoustic pressure within the cylinder were measured for different end-wall materials. Variables considered included acoustic absorption and reflection coefficients, ultrasound intensity, container height, and thermal properties of the end-wall material. It was observed that a quasi-steady flow field driven by acoustic streaming is rapidly established within the container, which is typically dominated by a stationary vortex ring with downward flow along the ring axis. After sufficient time this quasi-stationary flow exhibits a thermal instability causing it to transform into a secondary flow state. Different types of secondary flow states were observed, including cases where the flow along the cylinder axis is oriented upward toward the ultrasound transducer and cases where the axial flow changes directions along the cylinder axis.
Because biofilms have resistance to antibiotics, their control using minimum amounts of chemicals and energy becomes a critical issue particularly for resource-constrained long-term space and deep-sea explorations. This preliminary study investigates how ultrasound promoting penetration of antibiotic-loaded liposomes into alginate-based bacterial biofilms, resulting in enhanced bacterial (Ralstonia insidiosa) killing. Nano-sized liposomes are used as a delivery vehicle for the antibiotic gentamicin. Alginate-based synthetic biofilms, which are widely acknowledged as biofilm phantoms, filled with liposome solution are formed at the bottoms of six-well Petri dishes and exposed to ultrasound (frequency = 2.25 MHz, 10% duty cycle, and spatially and temporally averaged intensity ISAPA = 4.4 W/cm(2)). Gentamicin is released from liposomes after they are lysed using detergent solution (0.05% sodium dodecyl sulfate, 1.0% Triton X-100) and incubated for 20 min. The alginate biofilm is dissolved and diluted, counting of colony-forming units shows about 80% of the bacteria are killed. It has also been shown the liposome-capture density by the alginate film increases linearly with the ultrasound intensity up to ISAPA = 6.2 W/cm(2) reaching approximately threefold that without ultrasound. Measurement by using particle-image velocimetry has demonstrated the acoustic streaming with modification by thermal convection controls the enhancement of the liposome capture rate.
The gentamicin-loaded nano-sized liposomes are shown to penetrate into alginate-based Ralstonia insidiosa bacterial biofilms by acoustic streaming generated by moderate pulsed ultrasound (frequency = 2.25 MHz, 10% duty cycle and spatially and temporally averaged intensity, I ≈ 4.4 W/cm). The liposomes are then burst by the scanned relatively high intensity ultrasound (frequency = 1.1 MHz, 10% duty cycle, the spatially and temporally averaged intensity I ≈ 90 W/cm) in situ, and the gentamicin solution is released from the liposomes resulting in 72% of Ralstonia insidiosa killing.
An experimental study has been performed to measure the effect of ultrasound on nanoparticle diffusion in an agarose hydrogel. Agarose hydrogel is often used as a simulant for biofilms and certain biological tissues, such as muscle and brain tissue. The work was motivated by recent experiments indicating that ultrasonic excitation of moderate intensity can significantly enhance nanoparticle diffusion in a hydrogel. The objective of the current study was to obtain detailed measurements of the effect of ultrasound on nanoparticle diffusion in comparison to the molecular diffusion in the absence of acoustic excitation. Experiments were conducted with 1 MHz ultrasound waves and nanoparticle diameters of 20 and 100 nm, using fluorescent imaging to measure particle concentration distribution. Under ultrasound exposure, the experiments yield estimates for both acoustic diffusion coefficients as well as acoustic streaming velocity within the hydrogel. Measured values of acoustic streaming velocity were on the order of 0.1 μm/s, which agree well with a theoretical estimate. Measured values of the acoustic diffusion coefficient were found to be 74% larger than the molecular diffusion coefficient of the nanoparticles for 20 nm particles and 133% larger than the molecular diffusion coefficient for 100 nm particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.