The use of light for medical treatment has been studied previously. In this study, we examined the effect of light from a red light-emitting diode on osteogenic differentiation of mouse mesenchymal stem cells (D1 cells) which were cultured in the presence of osteogenic differentiation medium (ODM) for 3 days, then exposed to a red light-emitting diode (LED) light of 647 nm wavelength once for 10 s, 30 s or 90 s with radiation energies of 0.093 J, 0.279 J and 0.836 J, respectively. D1 cells in the presence of ODM differentiated into osteoblasts, and this process was enhanced on exposure to LED light in ODM medium. This effect was confirmed by increased Alizarin red staining, higher alkaline phosphatase (ALP) activity, higher mRNA expressions of osteocalcin, collagen type I, osteopontin and Runt-related transcription factor2 (Runx2), and higher levels by reverse transcriptase-polymerase chain reaction (RT-PCR) and by increased immunofluorescence staining against cluster of differentiation 44 (CD44) by immunofluorescence microscopy, confocal microscopy and flow cytometric analysis. These data suggest that osteogenic differentiation of mesenchymal stem cells (MSCs) in ODM is enhanced by LED light exposure.
The growth of dendrites on lithium metal electrodes is problematic because it causes irreversible capacity loss and safety hazards. Localised high-concentration electrolytes (LHCEs) can form a mechanically stable solid-electrolyte interphase and prevent uneven growth of lithium metal. However, the optimal physicochemical properties of LHCEs have not been clearly determined which limits the choice to fluorinated non-solvating cosolvents (FNSCs). Also, FNSCs in LHCEs raise environmental concerns, are costly, and may cause low cathodic stability owing to their low lowest unoccupied molecular orbital level, leading to unsatisfactory cycle life. Here, we spectroscopically measured the Li+ solvation ability and miscibility of candidate non-fluorinated non-solvating cosolvents (NFNSCs) and identified the suitable physicochemical properties for non-solvating cosolvents. Using our design principle, we proposed NFNSCs that deliver a coulombic efficiency up to 99.0% over 1400 cycles. NMR spectra revealed that the designed NFNSCs were highly stable in electrolytes during extended cycles. In addition, solvation structure analysis by Raman spectroscopy and theoretical calculation of Li+ binding energy suggested that the low ability of these NFNSCs to solvate Li+ originates from the aromatic ring that allows delocalisation of electron pairs on the oxygen atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.