IntroductionPrevious research has reported that the gut microbiota performs an essential role in sleep through the microbiome–gut–brain axis. However, the causal association between gut microbiota and sleep remains undetermined.MethodsWe performed a two-sample, bidirectional Mendelian randomization (MR) analysis using genome-wide association study summary data of gut microbiota and self-reported sleep traits from the MiBioGen consortium and UK Biobank to investigate causal relationships between 119 bacterial genera and seven sleep-associated traits. We calculated effect estimates by using the inverse-variance weighted (as the main method), maximum likelihood, simple model, weighted model, weighted median, and MR-Egger methods, whereas heterogeneity and pleiotropy were detected and measured by the MR pleiotropy residual sum and outlier method, Cochran’s Q statistics, and MR-Egger regression.ResultsIn forward MR analysis, inverse-variance weighted estimates concluded that the genetic forecasts of relative abundance of 42 bacterial genera had causal effects on sleep-associated traits. In the reverse MR analysis, sleep-associated traits had a causal effect on 39 bacterial genera, 13 of which overlapped with the bacterial genera in the forward MR analysis.DiscussionIn conclusion, our research indicates that gut microbiota may be involved in the regulation of sleep, and conversely, changes in sleep-associated traits may also alter the abundance of gut microbiota. These findings suggest an underlying reciprocal causal association between gut microbiota and sleep.
More and more evidence indicates that the dysregulations of microRNAs (miRNAs) lead to diseases through various kinds of underlying mechanisms. Identifying the multiple types of disease-related miRNAs plays an important role in studying the molecular mechanism of miRNAs in diseases. Moreover, compared with traditional biological experiments, computational models are time-saving and cost-minimized. However, most tensor-based computational models still face three main challenges: (i) easy to fall into bad local minima; (ii) preservation of high-order relations; (iii) false-negative samples. To this end, we propose a novel tensor completion framework integrating self-paced learning, hypergraph regularization and adaptive weight tensor into nonnegative tensor factorization, called SPLDHyperAWNTF, for the discovery of potential multiple types of miRNA–disease associations. We first combine self-paced learning with nonnegative tensor factorization to effectively alleviate the model from falling into bad local minima. Then, hypergraphs for miRNAs and diseases are constructed, and hypergraph regularization is used to preserve the high-order complex relations of these hypergraphs. Finally, we innovatively introduce adaptive weight tensor, which can effectively alleviate the impact of false-negative samples on the prediction performance. The average results of 5-fold and 10-fold cross-validation on four datasets show that SPLDHyperAWNTF can achieve better prediction performance than baseline models in terms of Top-1 precision, Top-1 recall and Top-1 F1. Furthermore, we implement case studies to further evaluate the accuracy of SPLDHyperAWNTF. As a result, 98 (MDAv2.0) and 98 (MDAv2.0-2) of top-100 are confirmed by HMDDv3.2 dataset. Moreover, the results of enrichment analysis illustrate that unconfirmed potential associations have biological significance.
Many studies have indicated miRNAs lead to the occurrence and development of diseases through a variety of underlying mechanisms. Meanwhile, computational models can save time, minimize cost, and discover potential associations on a large scale. However, most existing computational models based on a matrix or tensor decomposition cannot recover positive samples well. Moreover, the high noise of biological similarity networks and how to preserve these similarity relationships in low-dimensional space are also challenges. To this end, we propose a novel computational framework, called WeightTDAIGN, to identify potential multiple types of miRNA–disease associations. WeightTDAIGN can recover positive samples well and improve prediction performance by weighting positive samples. WeightTDAIGN integrates more auxiliary information related to miRNAs and diseases into the tensor decomposition framework, focuses on learning low-rank tensor space, and constrains projection matrices by using the L2,1 norm to reduce the impact of redundant information on the model. In addition, WeightTDAIGN can preserve the local structure information in the biological similarity network by introducing graph Laplacian regularization. Our experimental results show that the sparser datasets, the more satisfactory performance of WeightTDAIGN can be obtained. Also, the results of case studies further illustrate that WeightTDAIGN can accurately predict the associations of miRNA–disease-type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.