We report a hierarchically branched TiO(2) nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO(2) nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (i) improved charge separation and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO(2)/electrolyte interface.
Nanowires represent a promising class of materials for exploring new concepts in solar energy conversion. Here we report the first experimental realization of axial modulation-doped p-i-n and tandem p-i-n(+) -p(+)-i-n silicon nanowire (SiNW) photovoltaic elements. Scanning electron microscopy images of selectively etched nanowires demonstrate excellent synthetic control over doping and lengths of distinct regions in the diode structures. Current-voltage (I-V) characteristics reveal clear and reproducible diode characteristics for the p-i-n and p-n SiNW devices. Under simulated one-sun solar conditions (AM 1.5G), optimized p-i-n SiNW devices exhibited an open circuit voltage (Voc) of 0.29 V, a maximum short-circuit current density of 3.5 mA/cm(2), and a maximum efficiency of 0.5%. The response of the short-circuit current versus Voc under varying illumination intensities shows that the diode quality factor is improved from n=1.78 to n=1.28 by insertion of the i-type SiNW segment. The temperature dependence of Voc scales as -2.97 mV/K and extrapolates to the crystalline Si band gap at 0 K, which is in excellent agreement with bulk properties. Finally, a novel single SiNW tandem solar cell consisting of synthetic integration of two photovoltaic elements with an overall p-i-n(+) -p(+)-i-n structure was prepared and shown to exhibit a Voc that is on average 57% larger than that of the single p-i-n device. Fundamental studies of such well-defined nanowire photovoltaics will enable their intrinsic performance limits to be defined.
Recent density-functional theory calculations suggest that codoping TiO 2 with donoracceptor pairs is more effective than monodoping for improving photoelectrochemical water-splitting performance because codoping can reduce charge recombination, improve material quality, enhance light absorption and increase solubility limits of dopants. Here we report a novel ex-situ method to codope TiO 2 with tungsten and carbon (W, C) by sequentially annealing W-precursor-coated TiO 2 nanowires in flame and carbon monoxide gas. The unique advantages of flame annealing are that the high temperature (41,000°C) and fast heating rate of flame enable rapid diffusion of W into TiO 2 without damaging the nanowire morphology and crystallinity. This is the first experimental demonstration that codoped TiO 2 :(W, C) nanowires outperform monodoped TiO 2 :W and TiO 2 :C and double the saturation photocurrent of undoped TiO 2 for photoelectrochemical water splitting. Such significant performance enhancement originates from a greatly improved electrical conductivity and activity for oxygen-evolution reaction due to the synergistic effects of codoping.
We report an efficient hybrid Si microwire (radial junction) and planar solar cell with a maximum efficiency of 11.0% under AM 1.5G illumination. The maximum efficiency of the hybrid cell is improved from 7.2% to 11.0% by passivating the top surface and p-n junction with thin a-SiN:H and intrinsic poly-Si films, respectively, and is higher than that of planar cells of the identical layers due to increased light absorption and improved charge-carrier collections in both wires and planar components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.