Organic electrode materials bring about new possibilities for the next generation green and sustainable lithium/sodium ion batteries (LIBs/SIBs) owing to their low cost, environmental benignity, renewability, flexibility, redox stability and structural diversity. However, electroactive organic compounds face many challenges in practical applications for LIBs/SIBs, such as high solubility in organic electrolytes, poor electronic conductivity, and low discharge potential as postive materials. Quinone organic materials are the most promising candidates as electrodes in LIBs/SIBs because of their high theoretical capacity, good reaction reversibility and high resource availability. While quinone electrode materials (QEMs) have so far received less attention in comparison with other organic electrode materials in secondary batteries. In this paper, an overview of the recent developments in the field of QEMs for LIBs/SIBs is provided, emphasizing on the modifications of the quinone compounds in solubility, electronic conductivity, and discharge plateaus. Finally, multifaceted modification approaches are analyzed, which can stimulate the practical applications of QEMs for LIBs/SIBs.
In this study, Ag deposited three-dimensional MnO 2 porous hollow microspheres (Ag/MnO 2 PHMSs) with high dispersion of the atom level Ag species are first prepared by a novel method of redox precipitation. Due to the highly efficient utilization of downsized Ag nanoparticles, the optimal 0.3% Ag/MnO 2 PHMSs can completely degrade 70 ppm CH 3 SH within 600 s, much higher than that of MnO 2 PHMSs (79%). Additionally, the catalyst retains longterm stability and can be regenerated to its initial activity through regeneration with ethanol and HCl. The results of characterization of Ag/MnO 2 PHMSs and catalytic performance tests clearly demonstrate that the proper amount of Ag incorporation not only facilitates the chemi-adsorption but also induces more formation of vacancy oxygen (O v ) and lattice oxygen (O L ) in MnO 2 as well as Ag species as activation sites to collectively favor the catalytic ozonation of CH 3 SH. Ag/MnO 2 PHMSs can efficiently transform CH 3 SH into CH 3 SAg/CH 3 S-SCH 3 and then oxidize them into SO 4 2− and CO 2 as evidenced by in situ diffuse reflectance infrared Fourier transform spectroscopy. Meanwhile, electron paramagnetic resonance and scavenger tests indicate that •OH and 1 O 2 are the primary reactive species rather than surface atomic oxygen species contributing to CH 3 SH removal over Ag/MnO 2 PHMSs. This work presents an efficient catalyst of single atom Ag incorporated MnO 2 PHMSs to control air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.