Transition-metal-catalyzed activation of C-H and C-C bonds is a challenging area in synthetic organic chemistry. Among various methods to accomplish these processes, the approach using metal-organic cooperative catalytic systems is one of the most promising. In this protocol, organic molecules as well as transition metals act as catalysts to bring about reactions, which proceed with high efficiencies and selectivities. Various metal-organic cooperative catalytic systems developed for C-H and C-C bond activation reactions are discussed in this review. Also discussed are how each metal-organic cooperative catalyst affects the reaction mechanism and what kinds of substrates can be applied in each of the catalytic processes.
In recent years, the use of nanoparticle-based antimicrobials has been increased due to many advantages over conventional agrochemicals. This study investigates the utilization of common medicinal plant dandelion, Taraxacum officinale, for the synthesis of silver nanoparticles (TOL-AgNPs). AgNPs were evaluated for antimicrobial activity against two important phytopathogens, Xanthomonas axonopodis and Pseudomonas syringae. The morphology, size, and structure of TOL-AgNPs were characterized using UV-visible spectroscopy and X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) showed the presence of phytochemicals involved during synthesis of NPs. High-resolution transmission electron microscopy (HR-TEM) analysis shed light on the size of monodispersed spherical AgNPs ranging between 5 and 30 nm, with an average particle size of about 15 nm. The TOL-AgNPs (at 20 μg/mL concentration) showed significant antibacterial activity with significant growth inhibition of phytopathogens X. axonopodis (22.0 ± 0.84 mm) and P. syringae (19.5 ± 0.66 mm). The synthesized AgNPs had higher antibacterial activity in comparison with commercial AgNPs. Synergistic assays with standard antibiotics revealed that nanoformulations with tetracycline showed better broad-spectrum efficiency to control phytopathogens. They also possessed significant antioxidant potential in terms of ABTS (IC = 45.6 μg/mL), DPPH (IC = 56.1 μg/mL), and NO (IC = 55.2 μg/mL) free radical scavenging activity. The TOL-AgNPs showed high cytotoxic effect against human liver cancer cells (HepG2). Overall, dandelion-mediated AgNPs synthesis can represent a novel approach to develop effective antimicrobial and anticancer drugs with a cheap and eco-friendly nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.