Positive selection to self-MHC/peptide complexes has long been viewed as a device for skewing the T cell repertoire toward recognition of foreign peptides presented by self-MHC molecules. Here, we provide evidence for an alternative possibility, namely, that the self-peptides controlling positive selection in the thymus serve to maintain the longevity of mature T cells in the periphery. Surprisingly, when total T cell numbers are reduced, these self-ligands become overtly stimulatory and cause naive T cells to proliferate and undergo homeostatic expansion.
ObjectiveCerebral amyloidosis and severe tauopathy in the brain are key pathological features of Alzheimer’s disease (AD). Despite a strong influence of the intestinal microbiota on AD, the causal relationship between the gut microbiota and AD pathophysiology is still elusive.DesignUsing a recently developed AD-like pathology with amyloid and neurofibrillary tangles (ADLPAPT) transgenic mouse model of AD, which shows amyloid plaques, neurofibrillary tangles and reactive gliosis in their brains along with memory deficits, we examined the impact of the gut microbiota on AD pathogenesis.ResultsComposition of the gut microbiota in ADLPAPT mice differed from that of healthy wild-type (WT) mice. Besides, ADLPAPT mice showed a loss of epithelial barrier integrity and chronic intestinal and systemic inflammation. Both frequent transfer and transplantation of the faecal microbiota from WT mice into ADLPAPT mice ameliorated the formation of amyloid β plaques and neurofibrillary tangles, glial reactivity and cognitive impairment. Additionally, the faecal microbiota transfer reversed abnormalities in the colonic expression of genes related to intestinal macrophage activity and the circulating blood inflammatory monocytes in the ADLPAPT recipient mice.ConclusionThese results indicate that microbiota-mediated intestinal and systemic immune aberrations contribute to the pathogenesis of AD in ADLPAPT mice, providing new insights into the relationship between the gut (colonic gene expression, gut permeability), blood (blood immune cell population) and brain (pathology) axis and AD (memory deficits). Thus, restoring gut microbial homeostasis may have beneficial effects on AD treatment.
Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide highfidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steadystate visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).or more than 80 y, electroencephalography (EEG) has provided an effective noninvasive means to study human brain activity (1). EEG is instrumental in a wide range of clinical and research applications, from diagnosing epilepsy (2) to improving our understanding of language comprehension (3) and the development of brain-computer interfaces (BCI) (4). Conventional EEG recording systems, particularly the physical interface between the sensor (commonly known as an electrode) and the head, have limitations that constrain the more widespread use of EEG monitoring. Electrodes typically consist of rigid metal disks mechanically secured to the head with a mesh cap and chin strap, where electrolyte gels (5) enable efficient electrical coupling by reducing the impedance at the skin interface. This arrangement causes skin irritation (erythema) and leads to electrical degradation for periods of use that extend more than a few hours, typically caused by drying of the electrolyte gel (6). Recent technologies replace the gel (7, 8) with needles (8, 9), contact probes (10, 11), capacitive disks (12, 13), conductive composites (14, 15), or nanowires (16). Such dry electrodes have some promise, but they require multistep preparations, obtrusive wiring interfaces, and/or cumbersome mechanical fixtures. These shortcomings limit the potential for long-term use in diagnosis of neurological disabilities (17, 18) or in persistent BCI (17,19). For example, although microneedle electrodes can record EEG signals for a few hours (20), the interface does not offer the robustness, comfort, or eas...
A number of recent reports have demonstrated that only CD133-positive cancer cells of glioblastoma multiforme (GBM) have tumor-initiating potential. These findings raise an attractive hypothesis that GBMs can be cured by eradicating CD133-positive cancer stem cells (CSCs), which are a small portion of GBM cells. However, as GBMs are known to possess various genetic alterations, GBMs might harbor heterogeneous CSCs with different genetic alterations. Here, we compared the clinical characteristics of two GBM patient groups divided according to CD133-positive cell ratios. The CD133-low GBMs showed more invasive growth and gene expression profiles characteristic of mesenchymal or proliferative subtypes, whereas the CD133-high GBMs showed features of cortical and well-demarcated tumors and gene expressions typical of proneuronal subtype. Both CD133-positive and CD133-negative cells purified from four out of six GBM patients produced typical GBM tumor masses in NOD-SCID brains, whereas brain mass from CD133-negative cells showed more proliferative and angiogenic features compared to that from CD133-positive cells. Our results suggest, in contrast to previous reports that only CD133-positive cells of GBMs can initiate tumor formation in vivo CD133-negative cells also possess tumor-initiating potential, which is indicative of complexity in the identification of cancer cells for therapeutic targeting. A recent concept in brain tumor biology is that brain tumors arise from cancer stem cells (CSCs) that are CD133 positive (CD133 ( þ ) ). It has been reported that a small number of CD133 ( þ ) glioblastoma multiforme (GBM) cells are able to recapitulate the original tumor in vivo, whereas millions of CD133-negative (CD133 (À) ) cells could not produce brain tumor masses. 1-6 However, accumulating evidence suggests that CD133 (À) GBM cells can also regenerate heterogenous tumors in vivo, 7,8 and generation of the huge and rapidly growing tumors by only CD133 ( þ ) CSCs would be difficult because more than 50% of GBM patients have few CD133 ( þ ) cells. 9 As a majority of neurogenic astrocytes in the adult brain are not recognized by a CD133 antibody, 8 it is likely that CD133 might be newly expressed in GBM CSCs that are derived from CD133 (À) adult neural stem cells (NSCs) or terminally differentiated brain cells, such as astrocytes, neurons, and oligodendrocytes. Given that the gene expression profile is changed when GBM recurs after treatments, 10 it is plausible that new CD133 expression may occur if the characteristics of CSCs are changed or if some CSCs are selected by treatment. Furthermore, the wide-range variation in CD133 ( þ ) cell ratio (0.1-50% in GBM patients) 1-6 also suggests the existence of other GBM CSCs that do not express CD133.Therefore, we hypothesize that there are several kinds of CSCs in the tumor mass of GMB, and these diverse CSCs
Here, we demonstrated that iNKT cells were decreased in number in the adipose tissue of obese subjects. Interestingly, CD1d, a molecule involved in lipid antigen presentation to iNKT cells, was highly expressed in adipocytes, and CD1d-expressing adipocytes stimulated iNKT cell activity through physical interaction. iNKT cell population and CD1d expression were reduced in the adipose tissue of obese mice and humans compared to those of lean subjects. Moreover, iNKT cell-deficient J␣18 knockout mice became more obese and exhibited increased adipose tissue inflammation at the early stage of obesity. These data suggest that adipocytes regulate iNKT cell activity via CD1d and that the interaction between adipocytes and iNKT cells may modulate adipose tissue inflammation in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.