In this paper, the chars of wood dust, corn straw, rice husk and coal pulverized were obtained at different residual time of various pyrolysis temperature (1173 K, 1273 K and 1373 K) during the process of flash pyrolysis in the drop tube furnace (DTF). In order to obtain the parameters of porous structure which included specific surface area, pore volume and fractal dimension of char, low-temperature nitrogen adsorption method was employed to obtain nitrogen adsorption isotherm of chars sample. For the four chars, the corn straw char had the biggest specific surface area and pore volume, the rice husk in second place, the wood dust in third place, and the pulverized coal char in the last one. By taking Frenkel-Halsey Hil (FHH) method to analyze the fractal character of char surface structure, we found that the fractal dimension of biomass except wood char is higher than those of pulverized coal char.
As for the crops root stubble having the developed root system, the digging shovel with drag reduction has been designed for reducing disturbance to soil generated by soil-engaging components and decreasing power consumption. Drag reduction performance test of the offset mining shovels is developed with the method of orthogonal rotation combination test design, law and importance degree of the four critical factors’ influence on traction resistance has been found, including shovel buried angle, slip cutaway, buried depth, and machine forward speed. Then the mathematical model of traction resistance is developed and the optimum parameters for digging shovel resistance are received.
The developed corn stubble harvester can simultaneously finish such as the digging, picking up, cleaning, collection and Stripy laying stubble process and so on, but it cost more man-hour time because of the high digging resistance and high engine power consumption in digging stubble works. The digging spring tooth for corn stubble harvester including self-exited vibration S-shaped spring handle and curved chisel-shaped bionic tooth is designed based on the mechanism of drag reduction of self-excited vibration and bionic drag reduction for reduce digging resistance and power consumption, and the statics analysis of digging spring tooth is done by ANSYS software, the stress and strain distribution diagrams show the design is reasonable.
With the development of the times and the advancement of science and technology, the development of 3D animation has gradually been applied in various fields. In the field of mechanical control, three-dimensional animation has gradually become a very important application. In the actual application process, the use of three-dimensional animation effects cannot be applied in the field of mechanical control only by imagination. It must be applied in practice from the perspective of mechanical control. Analyze from its own stability and external factors to realize its application value. The purpose of this paper is to study the application of 3D animation in mechanical control mechanism. This article will take mechanical control as an entry point to discuss the application of three-dimensional animation in its mechanism. The research is carried out from two aspects. The first is the application of the robot arm. Based on the kinematic path planning of the shortest time priority strategy, the shorter the motion time of the robot arm, the faster the speed, and the vibration is more difficult to avoid. This is the vibration of the flexible arm. Improve its work efficiency, lay the foundation for more complex path planning problems; create conditions for lighter and faster robotic arm applications. The second is the application of the mechanical foot. The proposed ankle joint control strategy based on the lateral and forward cycle matching can be combined with the forward plane walking control strategy under the stable initial gait of the robot to realize the humanlike virtual prototype of the biped robot. Dynamic walking for analysis. Experimental investigations have shown that in the process of normal walking, there is a dynamic swing process and a static support process. The swing process refers to the lifting of the foot to move forward or backward, and the supporting process refers to the immobilization of one foot to the other. One fulcrum on each foot allows it to move forwards and backwards. Among them, the dynamic swing process accounts for 40% of the whole process, and the static support process accounts for 60%. In general, based on these data, the three-dimensional robotic arm and three-dimensional robotic foot can be better studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.