A locally conservative, hybrid spectral difference method (HSD) is presented and analyzed for the Poisson equation. The HSD is composed of two types of finite difference approximations; the cell finite difference and the interface finite difference. Embedded static condensation on cell interior unknowns considerably reduces the global couplings, resulting in the system of equations in the cell interface unknowns only. A complete ellipticity analysis is provided. The optimal order of convergence in the semi-discrete energy norms is proved. Several numerical results are given to show the performance of the method, which confirm our theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.