In recent years, the intelligent transport system (ITS) has been developed rapidly because of global urbanization and industrialization, which is considered as the key enabling technology to improve road safety, traffic efficiency, and driving experience. To achieve these goals, vehicles need to be equipped with a large number of sensors to enable the generation and exchange of high-rate data streams. Recently, millimeter-wave (mmWave) technology has been introduced as a means of meeting such a high data rate requirement. In this paper, a comprehensive study on the channel characteristics for vehicle-toinfrastructure (V2I) link in mmWave band (22.1-23.1 GHz) for various road environments and deployment configurations is conducted. The self-developed ray-tracing (RT) simulator is employed with the calibrated electromagnetic (EM) parameters. The three-dimensional (3D) environment models are reconstructed from the OpenStreetMap (OSM). In the simulations, not only the vehicle user equipment (UE) moves, but also the other vehicles such as cars, delivery vans, and buses move around the vehicle UE. Moreover, the impacts of the receiver (Rx) multiple antennas and beam switching technologies at the vehicle UE are evaluated as well. The channel parameters of the V2I link in mmWave band, including received power, Rician K-factor, rootmean-square delay spread, and angular spreads are explored in the target scenarios under different simulation deployments. This work aims to help the researchers understand the channel characteristics of the V2I links in mmWave band and support the link-level and system-level design for future vehicular communications.
In the vision of intelligent transportation, vehicles are expected to feature with advanced applications, such as automatic road enforcement, dynamic traffic light sequence, and autonomous driving. Therefore, real-time and fast dynamic information exchanges are required, and vehicle-to-everything (V2X) communications are highly demanded. In this work, the channel characteristics of vehicular communication are analyzed in the millimeter-wave (mmWave) band at 22.1-23.1 GHz. Specifically, two types of links (the satellite link and the terrestrial link) are considered in urban and highway scenarios with different weather conditions. The ray-tracing simulator together with calibrated electromagnetic parameters is employed to practically generate wideband channels. The key channel parameters of each link including the received power, Rician K -factor, root-mean-square delay spread, and angular spreads are explored. The co-channel interferences between the two links are analyzed as well. The observations and conclusions of this work can be useful for the design of V2X communication technologies.
5G AgiLe and fLexible integration of SaTellite And cellulaR (5G‐ALLSTAR) is a Korea‐Europe (KR‐EU) collaborative project for developing multi‐connectivity (MC) technologies that integrate cellular and satellite networks to provide seamless, reliable, and ubiquitous broadband communication services and improve service continuity for 5G and beyond. The main scope of this project entails the prototype development of a millimeter‐wave 5G New Radio (NR)‐based cellular system, an investigation of the feasibility of an NR‐based satellite system and its integration with cellular systems, and a study of spectrum sharing and interference management techniques for MC. This article reviews recent research activities and presents preliminary results and a plan for the proof of concept (PoC) of three representative use cases (UCs) and one joint KR‐EU UC. The feasibility of each UC and superiority of the developed technologies will be validated with key performance indicators using corresponding PoC platforms. The final achievements of the project are expected to eventually contribute to the technical evolution of 5G, which will pave the road for next‐generation communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.