In recent years, fishery has developed rapidly. For the vital interests of the majority of fishermen, this paper makes full use of Internet of Things and air–water amphibious UAV technology to provide an integrated system that can meet the requirements of fishery water quality monitoring and prediction evaluation. To monitor target water quality in real time, the water quality monitoring of the system is mainly completed by a six-rotor floating UAV that carries water quality sensors. The GPRS module is then used to realize remote data transmission. The prediction of water quality transmission data is mainly realized by the algorithm of time series comprehensive analysis. The evaluation rules are determined according to the water quality evaluation standards to evaluate the predicted water quality data. Finally, the feasibility of the system is proved through experiments. The results show that the system can effectively evaluate fishery water quality under different weather conditions. The prediction accuracy of the pH, dissolved oxygen content, and ammonia nitrogen content of fishery water quality can reach 99%, 98%, and 99% on sunny days, and reach 92%, 98%, and 91% on rainy days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.