In recent years, fishery has developed rapidly. For the vital interests of the majority of fishermen, this paper makes full use of Internet of Things and air–water amphibious UAV technology to provide an integrated system that can meet the requirements of fishery water quality monitoring and prediction evaluation. To monitor target water quality in real time, the water quality monitoring of the system is mainly completed by a six-rotor floating UAV that carries water quality sensors. The GPRS module is then used to realize remote data transmission. The prediction of water quality transmission data is mainly realized by the algorithm of time series comprehensive analysis. The evaluation rules are determined according to the water quality evaluation standards to evaluate the predicted water quality data. Finally, the feasibility of the system is proved through experiments. The results show that the system can effectively evaluate fishery water quality under different weather conditions. The prediction accuracy of the pH, dissolved oxygen content, and ammonia nitrogen content of fishery water quality can reach 99%, 98%, and 99% on sunny days, and reach 92%, 98%, and 91% on rainy days.
Objective. Motor Imagery Brain-Computer Interface (MI-BCI) is an active Brain-Computer Interface (BCI) paradigm focusing on the identification of motor intention, which is one of the most important non-invasive BCI paradigms. In MI-BCI studies, deep learning-based methods (especially lightweight networks) have attracted more attention in recent years, but the decoding performance still needs further improving. Approach. To solve this problem, we designed a filter bank structure with sinc-convolutional layers for spatio-temporal feature extraction of MI-EEG in four motor rhythms. The Channel Self-Attention method was introduced for feature selection based on both global and local information, so as to build a model called Filter Bank Sinc-convolutional Network with Channel Self-Attention (FB-Sinc-SCANet) for high performance MI-decoding. Also, we proposed a data augmentation method based on Multivariate Empirical Mode Decomposition (MEMD) to improve the generalization capability of the model. Main results. We performed an intra-subject evaluation experiment on the unseen data of three open MI datasets. The proposed method achieved mean accuracy of 78.20% (4-class scenario) on BCI Competition IV IIa, 87.34% (2-class scenario) on BCI Competition IV IIb, and 72.03% (2-class scenario) on OpenBMI dataset, which are significantly higher than those of compared deep learning-based methods by at least 3.05% (p=0.0469), 3.18% (p=0.0371), and 2.27% (p=0.0024) respectively. Significance. This work provides a new option for deep learning-based MI decoding, which can be employed for building BCI systems for motor rehabilitation.
Exploring the effective signal features of electroencephalogram (EEG) signals is an important issue in the research of brain–computer interface (BCI), and the results can reveal the motor intentions that trigger electrical changes in the brain, which has broad research prospects for feature extraction from EEG data. In contrast to previous EEG decoding methods that are based solely on a convolutional neural network, the traditional convolutional classification algorithm is optimized by combining a transformer mechanism with a constructed end-to-end EEG signal decoding algorithm based on swarm intelligence theory and virtual adversarial training. The use of a self-attention mechanism is studied to expand the receptive field of EEG signals to global dependence and train the neural network by optimizing the global parameters in the model. The proposed model is evaluated on a real-world public dataset and achieves the highest average accuracy of 63.56% in cross-subject experiments, which is significantly higher than that found for recently published algorithms. Additionally, good performance is achieved in decoding motor intentions. The experimental results show that the proposed classification framework promotes the global connection and optimization of EEG signals, which can be further applied to other BCI tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.