It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced 125 I-apoA-I binding to the HCBS, whereas 125 IapoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (#187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of 125 I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-Icontaining particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipidcontaining site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL
The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that 125 I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I ⌬(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of 125 I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of 125 I-apoA-I from the PM was 4-fold slower than that from ICCs at 37°C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.